W+Z Physics with ATLAS and CMS

DRAFT1.1-20.9.11

The talk has 20+5min and there are further LHC talks too/before. Contact max.klein@cern.ch

Max Klein

For the ATLAS and CMS Collaborations

International Symposium on Multiparticle Dynamics, ISMD11, Hiroshima, Japan, 26.9.2011

W and Z events in ATLAS

Clear signature, copious: about 1M W[±] and 100k Z in e+ μ per 1fb⁻¹ luminosity

 $p_T^{\ |} > 20 \text{ GeV}, p_T^{\ v} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$ $p_T^{\ |} > 20 \text{ GeV}, 66 < M_{\parallel} < 116 \text{ GeV}$ $|\eta_1| < 2.5 (|\eta_e| < 4.9)$

W and Z events in CMS

Clear signature and as copious as in ATLAS..

 $p_T^{\ |} > 25 \text{ GeV}, p_T^{\ v} > 25 \text{ GeV}, |\eta_1| < 2.1, m_T > 40 \text{ GeV}$ $p_T^{\ |} > 25 \text{ GeV}, 60 < M_{||} < 120 \text{ GeV}, |\eta_1| < 2.1$

why W+Z with the LHC?

ATLAS-CONF-2011-011

$$\mathcal{L} = \frac{\mu_{vis} n_b f_r}{\sigma_{vis}} \qquad \mathcal{L} = \frac{n_b f_r n_1 n_2}{2\pi \Sigma_x \Sigma_y} \qquad \sigma_{vis} = \mu_{vis}^{MAX} \frac{2\pi \Sigma_x \Sigma_y}{n_1 n_2}$$

Old "folklore"

1. Monitor the Luminosity

Beam separation scan (accurate to ATLAS 3.4%, CMS 4.0% in 2010)

2. Understand Detector: Calibration, alignment, MET:

Uncertainty Source	$\delta \mathcal{L}/\mathcal{L}$
Statistical	< 0.1%
Bunch charge product	3.1%
Beam centering	0.1%
Emittance growth and	
other non-reproducibility	0.4%
Beam position	
jitter	0.2%
Length scale calibration	0.3%
Absolute ID length scale	0.3%
Fit model	0.2%
Transverse correlations	0.9%
μ dependence	0.6%
Long-term consistency	0.5%
Total	3.4%

why W+Z with the LHC?

Present Reasons

- 1. Constrain Parton Densities $[d\sigma/dy,\eta,WZ+c,b]$
- 2. Explore QCD in new kinematic domain $[p_T(W,Z), WZ+jets]$
- 3. Perform precision electroweak measurements [Pol_w,sin²Θ,TGC]
- 4. $H \rightarrow WW$ and $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \tau\tau$ as $Z \rightarrow \tau\tau$

Here: focus on new high precision inclusive WZ cross section data and present first results on W+c,b and $p_T^{Z,W}$

- W,Z + jets: S.Shimizu (ATLAS), A.Hinzmann (CMS)
- With high statistics, genuine electroweak measurements will become more precise
- Higgs: C.Bini (ATLAS), G.Schott (CMS)
- τ Physics: S.Dhaliwal (ATLAS)

WZ Cross Sections with ATLAS and CMS

35pb⁻¹: 270k W[±] 24k Z (in e+ μ decay channels)

So far ATLAS and CMS collected 3.1 fb⁻¹ each

Drell-Yan and Deep Inelastic Scattering

Drell-Yan Spectrum in Neutral Currents

Low and high mass dominated by Z production γ Z interference +- 5% left and right from Z peak

 $M_{Z'}$ > 2.xx TeV (ATLAS), 2.yy TeV (CMS)

Total W+Z Cross Sections in I=e,µ Decay Mode

ATLAS

	$\sigma_W^{\text{tot}} \cdot BR$	$R(W \rightarrow$	$\ell \nu$)	[nb]	
	sta	sys	lum	acc	
W^+	6.048 ± 0.016	± 0.072	± 0.206	6 ± 0.096	$6.04 \pm 0.02 (\text{stat.}) \pm 0.06 (\text{syst.}) \pm 0.08 (\text{th}) \pm 0.24 (\text{lumi.})$
W^{-}	4.160 ± 0.014	± 0.057	± 0.141	1 ± 0.083	$4.26 \pm 0.01 (\text{stat.}) \pm 0.04 (\text{syst.}) \pm 0.07 (\text{th}) \pm 0.17 (\text{lumi.})$
W^{\pm}	10.207 ± 0.021	± 0.121	± 0.34	7 ± 0.164	$10.30 \pm 0.02 (\text{stat.}) \pm 0.10 (\text{syst.}) \pm 0.10 (\text{th}) \pm 0.41 (\text{lumi.})$
	$\sigma_{Z/\gamma^*}^{\text{tot}} \cdot \text{BI}$	$R(Z/\gamma^*)$	$\rightarrow \ell \ell$)	[nb]	
	66 < 7	$m_{\ell\ell} < 11$	16 GeV	r	CMS
	sta	sys	lum	acc	
Z/γ^*	0.937 ± 0.006	± 0.009	± 0.032	2 ± 0.016	$0.974 \pm 0.007 \text{ (stat.)} \pm 0.007 \text{ (syst.)} \pm 0.018 \text{ (th)} \pm 0.039 \text{ (lumi.)}$
			66 <m<:< td=""><td>116 GeV</td><td>60<m<120 gev<="" td=""></m<120></td></m<:<>	116 GeV	60 <m<120 gev<="" td=""></m<120>
arXiv	/:1109:xxxx → P	RD			arXiv:1107:4789 → JHEP

Electron and muon, ATLAS and CMS data are consistent. Cross sections measured to 1% systematic uncertainty. Acceptance uncertainty (1-2%) due to extrapolation to full phase space.

Total WZ Cross Sections vs NNLO Thy - CMS

Good agreement with NNLO (FEWZ+MWST08). Exp uncertainty dominated by Luminosity

Total Z \rightarrow II Cross Sections vs Vs=2E_p

Total W \rightarrow lv Cross Sections vs Vs=2E_p

Total W-Z Cross Sections

Experimental correlation of cross sections dominated by luminosity. Theoretical correlations dominated by PDF correlations, e.g. W/Z for symmetric sea is about constant → very slim ellipses

arXiv:1109:xxxx \rightarrow PRD

Integrated W-Z Cross Sections (in fiducial regions)

Measurement uncertainty reduced as acc (thy) error becomes negligible. Theory errors taken as 68% for ellipse. PDF uncertainties only, which are defined differently by fit groups. Comparison to NNLO required (and possible with FEWZ and DYNNLO used) to reduce scale uncertainty effect.

Differential Z Cross Section

Absolute differential cross section measurement Experimental precision 2-6% plus 3.4% for L Compared to NNLO in fiducial region. JR09 low at central rapidity. Visible sensitivity to PDF's

CMS PAS EWK 10-010 (March 2011)

Differential W⁺ and W⁻ Cross Sections

2% precise measurement over full range of pseudorapidity, in fiducial region comparison with NNLO (FEWZ/DYNNLO), as for Z: no weak corrections applied. Sensitivity to PDFs apparent (JR09 low at low η , ABKM09 high at large η)

W Charge Asymmetry

W Charge Asymmetry from LHC

Asymmetries evaluated for full phase space (with $p_T^{-1} > 20$ GeV) for comparison of 3 experiments. LHCb extending most forward. Theory to NLO with 90% CL.

First Measurement of W+c

First Measurement of W+b

 $\mathbf{p}_{\mathrm{T}}^{\mathrm{Z}}$

PYTHIA tunes vs Z transverse momentum POWHEG found low at low $p_T Z$ too (as ATLAS)

Shape of p_T^z distribution in agreement with FEWZ at $O(\alpha_s)$ at high transverse momentum

CMS PAS EWK 10-010 (March 2011)

Summary

To be written

backup

W Polarisation

sin²Θ

WW