Higgs and eA Physics with the LHeC

A few thoughts on asymptotics in space and time, or why should pp-ep and AA-pA and eA meet at the LHC?

Max Klein, University of Liverpool, Seminar at the University of Birmingham, November 20th, 2013

Focus on

LHC and some of its Physics Characteristics of the LHeC Physics Highlights of ep/eA Prospects and Detector

http://cern.ch/lhec

Next Workshop: January 20/21,2014

https://indico.cern.ch/conferenceDisplay.py?confId=278903

QCD at the LHC

Jets, Photons, Vector Bosons, Vector Bosons+Jets, Soft QCD [lowx, MPI, diffraction]

Inclusive jet cross sections and their energy dependent ratios well described by NLO QCD

From opening talk "QCD at the LHC and Beyond", MK, DESY, 9/2013

Possible QCD Developments

AdS/CFT	Breaking of Factorisation
Instantons	Free Quarks
Odderons	Unconfined Color
Non pQCD	New kind of coloured matter
QGP	Quark substructure
N ^k LO	New symmetry embedding QCD
Resummation	
Resultation	OCD may break (Ouigg DIS13)
Non-conventional PDFs	

QCD is the richest part of the Standard Model Gauge Field Theory and will (have to) be developed much further, on its own and as background

Huge success of the HEP Community

4.7.2012 greeting Melbourne from CERN

"The Higgs: So simple and yet so unnatural" G.Altarelli, arXiv:1308.0545

Higgs and QCD at the LHC

cf C. Grojean at EPS Stockholm

Small width (4 MeV) results in pt(H) dependent reduction of $M_{\gamma\gamma}$. Very high precision required to verify this and thus access Higgs width at the LHC..

Searches for New Physics BSM

HL-LHC Upgrade Ingredients

Geometric reduction factor $\rightarrow \beta^* \ge 10$ cm & Crab Cavities

Triplet aperture 🗲 New large aperture triplet magnets

Bunch intensity $\rightarrow N_b = 2.2 \ 10^{11}$ (limited in LHC by e-cloud) \rightarrow injector complex upgrade prerequisite for HL-LHC!!!

Event pile-up in detectors \rightarrow luminosity leveling

Beam Losses and Radiation → shielding, Cryo upgrade & relocation of electronics and PC

Collective effects and impedance → Collimator Upgrade

Electron cloud effect → beam scrubbing & feedback

Oliver Brüning CAS 7/13

LHeC

LHeC - electron beam upgrade

JPhysG:39(2012)075001, arXiv:1206.2913 http://cern.ch/lhec

CDR: default design. 60 GeV. L=10³³cm⁻²s⁻¹, P< 100 MW → ERL, synchronous ep/pp

can one build a 2-3-km long linac?

Design Report 2012

arXiv:1206.2913 http://cern.ch/lhec

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) **Installation and Infrastructure** Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) **Precision QCD and Electroweak** Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

The theory of DIS has developed much further: J.Blümlein Prog.Part.Nucl.Phys. 69(2013)28 DIS is an important part of particle physics: G.Altarelli, 1303.2842, S.Forte, G.Watt 1301:6754

Chapter 9 of CDR

9 System Design

9.1	Magn	ets for the Interaction Region
	9.1.1	Introduction
	9.1.2	Magnets for the ring-ring option
	9.1.3	Magnets for the linac-ring option
9.2	Accele	erator Magnets
	9.2.1	Dipole Magnets
	9.2.2	BINP Model
	9.2.3	CERN Model
	9.2.4	Quadrupole and Corrector Magnets
9.3	Ring-1	Ring RF Design
	9.3.1	Design Parameters
	9.3.2	Cavities and klystrons
9.4	Linac	-Ring RF Design
	9.4.1	Design Parameters
	9.4.2	Layout and RF powering
	9.4.3	Arc RF systems
9.5	Crab	crossing for the LHeC
	9.5.1	Luminosity Reduction
	9.5.2	Crossing Schemes
	9.5.3	RF Technology
9.6	Vacuu	ım
	9.6.1	Vacuum requirements
	9.6.2	Synchrotron radiation
	9.6.3	Vacuum engineering issues
9.7	Beam	Pipe Design
	9.7.1	Requirements
	9.7.2	Choice of Materials for beampipes
	9.7.3	Beampipe Geometries
	9.7.4	Vacuum Instrumentation
	9.7.5	Synchrotron Radiation Masks
	9.7.6	Installation and Integration
9.8	Cryog	enics
	9.8.1	Ring-Ring Cryogenics Design
	9.8.2	Linac-Ring Cryogenics Design
	9.8.3	General Conclusions Cryogenics for LHeC
9.9	Beam	Dumps and Injection Regions
	9.9.1	Injection Region Design for Ring-Ring Option
	9.9.2	Injection transfer line for the Ring-Ring Option
	9.9.3	60 GeV internal dump for Ring-Ring Option
	9.9.4	Post collision line for 140 GeV Linac-Ring option .
	9.9.5	Absorber for 140 GeV Linac-Ring option
	9.9.6	Energy deposition studies for the Linac-Ring option
	9.9.7	Beam line dump for ERL Linac-Ring option
	9.9.8	Absorber for ERL Linac-Ring option
		01

Components and Cryogenics

	r i i i i i i i i i i i i i i i i i i i		
	Ring	Linac	
magnets			
number of dipoles	3080	3504	
dipole field [T]	0.013 - 0.076	0.046 - 0.264	
number of quadrupoles	968	1514	
RF and cryogenics			
number of cavities	112	960	
gradient [MV/m]	11.9	20	
linac grid power [MW]	_	24	
synchrotron loss compensation [MW]	49	23	
cavity voltage [MV]	5	20.8	
cavity R/Q [Ω]	114	285	Jlab:
cavity Q_0	_	$2.5 \ 10^{10}$	4 10 ¹
cooling power [kW]	5.4@4.2 K	30@2 K	

Need to develop LHeC cavity (cryo-module)

systems will consist of a complex task. Further cavities and cryomodules will require a limited R&D program. From this we expect improved quality factors with respect to today's state of the art. The cryogenics of the L-R version consists of a formidable engineering challenge, however, it is feasible and, CERN disposes of the respective know-how.

LHeC at 10³³⁽³⁴⁾ Luminosity

parameter [unit]	L	HeC	
species	e^-	$p, {}^{208}\text{Pb}^{82+}$	Key issues:
beam energy (/nucleon) [GeV]	60	7000, 2760	-
bunch spacing [ns]	25,100	25,100	n hrightness
bunch intensity (nucleon) $[10^{10}]$	0.1 (0.2), 0.4	17(22), 2.5	p brightness
beam current [mA]	6.4(12.8)	$860\ (1110),\ 6$	
rms bunch length [mm]	0.6	75.5	10 mA le
polarization [%]	90	none, none	
normalized rms emittance $[\mu m]$	50	3.75(2.0), 1.5	Small beta*
geometric rms emittance [nm]	0.43	0.50(0.31)	
IP beta function $\beta_{x,y}^*$ [m]	0.12(0.032)	0.1 (0.05)	
IP spot size $[\mu m]$	7.2(3.7)	7.2(3.7)	High EKL eπ
synchrotron tune Q_s		$1.9 imes 10^{-3}$	
hadron beam-beam parameter	0.0001	(0.0002)	Keep power
lepton disruption parameter D	6	(30)	P limited
crossing angle	0 (detector-in	tegrated dipole)	
hourglass reduction factor H_{hg}	0.91	(0.67)	
pinch enhancement factor H_D	1	.35	L ^o P/E _e
CM energy [TeV]	130	0, 810	
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1 (1	0), 0.2	

Table 1: LHeC ep and eA collider parameters. The numbers give the default CDR values, with optimum values for maximum ep luminosity in parentheses and values for the ePb configuration separated by a comma.

LHeC Collaboration arXiv:1211:5102, see also O.Bruening and M.Klein arXiv:1305.2090 and PDG14 F Zimmermann

Steps towards an LHeC ERL Test Facility at CERN

STRAWMAN OPTICS DESIGN FOR THE LHeC ERL TEST FACILITY

 A. Valloni^{*}, O. Bruning, R. Calaga, E. Jensen, M. Klein, R.Tomas, F. Zimmermann, CERN, Geneva, Switzerland
A. Bogacz, D. Douglas, Jefferson Lab, Newport News Virginia

Figure 2: Consequent upgrade to LHeC pre-accelerator. By modifying the machine backleg to include a second full cryomodule, the recirculator can deliver higher beam energy of 600 MeV.

1 difailieter	0 2 40	21.2	
	MEIC	eRHIC	LHeC
Energy [GeV]	5-10	20	60
Frequency [MHz]	750	704	n×40
# of passes	-	6	3
Current/pass [mA]	3	50	6.6
Charge [nC]	4	3.5	0.3
Bunch Length [mm]	7.5	2.0	0.3

Current Test Facility Design (Final Stage)

[(75 MeV*2)*2]*3 + 100 MeV = 1000 MeV

Daresbury workshop: January 2013: 802 MHz, basic parameters reviewed

Strong international interest in collaborating: AsTEC, IHEP Beijing, BINP Novosibirsk, BNL, Cornell, Jefferson Lab, U Mainz..

First step endorsed recently: Development of 2 cavity cryo modules by 2016 and design of the testfacility by 2014 (CDR) and 2016 ("TDR")

Physics

Lepton–Proton Scattering Facilities

Energy frontier deep inelastic scattering: Higgs, top, searches, PDFs low x, nuclear matter. These and further physics topics require maximum beam energy and high luminosity.

Snowmass13 QCD WG report

Parton Distributions

Need to know the PDFs much better than so far, for nucleon structure, q-g dynamics, Higgs, searches, future colliders, and for the development of QCD. The LHC will provide further constraints, but:

(Un)certainty on PDFs

Light Quarks:

valence x < 0.01, $u_v x > 0.8$, $d_v x > 0.6$ light sea (related to strange) -8% ATLAS/F₂, light sea quark asymmetry, d/u=? Isospin relations (en!) ??

Strange: unknown, =dbar? strange valence?

Charm: need high precision to % for α_s (recent HERA 5%) Beauty: HERA 10-20%, bb \rightarrow A? Top: tPDF at high Q² >M_t² - unknown

Gluon: low x, saturation?, high x - unknown medium x: preciser for Higgs! Recent review: cf E.Perez, E.Rizvi 1208.1178, in RPP

..unintegrated, diffractive, generalised, polarised, photonic, nuclear PDFs ???

A new, required level of determination of PDFs can only be achieved with the LHeC.

Strange Quark Distribution

Leads to first (x,Q^2) measurement of the (anti-)strange density, HQ valence? $x = 10^{-4} .. 0.05$ $Q^2 = 100 - 10^5 \text{ GeV}^2$

ATLAS+HERA: Recent surprise: s/d =1 PRD85 (2012) 072004; arXiv:1109.5141

cf also HERMES: N_{κ} PLB666(2008)446 W+c measurements from ATLAS+CMS

Important PDF constraints from LHC though no direct determinations (Q²,x)

Why Precision?

Figure 1: Regions of absolute stability, meta-stability and instability of the SM vacuum in terms of the top and Higgs masses. The frame on the right zooms into the preferred experimental region (the grey ellipses denote the allowed region at 1, 2, and 3σ). The three boundary lines correspond to $\alpha_s(M_Z) = 0.1184 \pm 0.0007$, and the grading of the colours indicates the size of the theoretical error. The dotted contourlines show the instability scale in GeV, assuming the central value of $\alpha_s(M_Z)$. (For details see refs. [10,11].)

G Giudice Why Naturalness, arXiv:1307.7879

The strong coupling "constant"

Method	Current relative precision		Future relative precision
ete- out shapes	$expt \sim 1\%$ (LEP)		<1% possible (ILC/TLEP)
e e evi snapes	thry $\sim 3\%$ (NNLO+NLL, n.p. signif.)	[24]	$\sim 1.5\%$ (control n.p. via $Q^2\text{-dep.})$
at a - int rates	$expt \sim 2\%$ (LEP)		<1% possible (ILC/TLEP)
e^+e^- jet rates	thry $\sim 1\%$ (NNLO, n.p. moderate)	[25]	$\sim 0.5\%$ (NLL missing)
provision FW	$expt \sim 3\% (R_Z, LEP)$		0.1% (TLEP [8]), 0.5% (ILC [9])
precision Ew	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[26, 7]	$\sim 0.3\%$ (N4LO feasible, $\sim 10~{\rm yrs})$
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)		<0.2% possible (ILC/TLEP)
7 uccays	thry $\sim 2\%$ (N ³ LO, n.p. small)	[6]	$\sim 1\%~({\rm N^4LO}$ feasible, $\sim 10~{\rm yrs})$
en collidore	$\sim 1-2\%$ (pdf fit dependent)		0.1% (LHeC + HERA [21])
ep conders	(mostly theory, NNLO)	[27, 28, 29, 30]	$\sim 0.5\%$ (at least $\rm N^3LO$ required)
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)		< 1% challenging
nation conders	(NLO jets, NNLO $t\bar{t}$, gluon uncert.)	[15, 19, 31]	(NNLO jets imminent [20])
lattica	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$
lattice	(limited by accuracy of pert. th.)	[32, 33, 34]	(~ 5 yrs [35])

Table 1-1. Summary of current uncertainties in extractions of $\alpha_s(M_Z)$ and targets for future (5-25 years) determinations. For the cases where theory uncertainties are considered separately, the theory uncertainties for future targets reflect a reduction by a factor of about two.

Snowmass QCD WG report 9/2013

Prospects to measure $\alpha_s(M_z^2)$ to per mille precision with future ep and ee colliders Important for gauge unification, precision Higgs at LHC, and to overcome the past.

HL-LHC - Searches

ATLAS October 2012 to EU strategy forum

LHeC October 2012 to EU forum arXiv:1211.5102

With high energy and luminosity, the search range will be extended to high masses, up to 4-5 TeV in pair production, and PDF uncertainties come in $\sim 1/(1-x)$, CI effects?

HL-LHC - Searches

High precision PDFs are needed for the HL-LHC searches in order to probe into the range opened by the luminosity increase and to interprete possibly intriguing effects based on external information.

LHeC BSM poster at EPS13 M.D'Onofrio et al. see also arXiv:1211:5102 Relation LHeC-LHC Simulated PDFs from LHeC are on LHAPDF (Partons from LHeC, MK, V.Radescu LHeC-Note-2013-002 PHY)

Higgs with HL-LHC

F.Cerutti, "Properties of the New Boson" EPS13 Stockholm

Higgs physics at the LHC is a long term challenge [di-H, CP, M, VV damping..]

Precision for Higgs at the LHC

LHeC:

Exp uncertainty of predicted H cross section is 0.25% (sys+sta), using LHeC only.

Leads to H mass sensitivity.

Strong coupling underlying parameter (0.005 → 10%). LHeC: 0.0002 !

Needs N³LO

HQ treatment important ...

O.Brüning and M.Klein arXiv:1305.2090, MPLA 2013

Luminosity can boost LH(e)C to a precision H facility

Polarised electrons Maximum lumi Forward tracking High resolution No pile-up Direction asymmetry

• • •

LHeC Higgs	CC (e^-p)	NC (e^-p)	$CC(e^+p)$
Polarisation	-0.8	-0.8	0
Luminosity $[ab^{-1}]$	1	1	0.1
Cross Section [fb]	196	25	58
Decay BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^H e^- p$	$\mathcal{N}_{CC}^{H} e^{+} p$
$H \to b\overline{b}$ 0.577	113 100	$13 \ 900$	$3 \ 350$
$H \to c\overline{c}$ 0.029	5 700	700	170
$H \to \tau^+ \tau^- 0.063$	12 350	1 600	370
$H \to \mu\mu$ 0.00022	50	5	_
$H \to 4l$ 0.00013	30	3	_
$H \rightarrow 2l 2\nu$ 0.0106	2080	250	60
$H \rightarrow gg$ 0.086	16 850	2050	500
$H \rightarrow WW = 0.215$	42 100	$5\ 150$	$1 \ 250$
$H \rightarrow ZZ$ 0.0264	$5 \ 200$	600	150
$H \to \gamma \gamma$ 0.00228	450	60	15
$H \to Z\gamma$ 0.00154	300	40	10

H-bbar coupling to 0.7% precision with $1ab^{-1}$, at an S/B of 1 – studies of τ , c, .. to come

The LHeC WW \rightarrow H cross section is as large as the ILC Z* \rightarrow ZH cross section (300fb)...

→ 50pb@LHC, hiLumi + ep [H + PDFs] +QCD@h.o. : LHC - a high precision H factory

U.Klein Talk at EPS 7/2013, B.Mellado, Talk at LPCC 3/2013, CDR..

Relation of the LHeC and the LHC HI Program

Proton-Lead at the LHC

 Φ_z boson azimuthal emission angle $\Phi_{\text{EP}}\,$ event plane azimuth

v₂ for Z is zero, it decays before the plasma is formed ..

Perhaps surprising, recent results indicate that the flow in pPb resembles PbPb Possibly the determination of nPDFs in AA and pA is reduced to W,Z production [collective effects in final state – rescattering of produced partons – hydrodynamics]

LHeC as Electron Ion Collider

LHeC is part of NuPECCs long range plan since 2010 $L_{eN} \simeq 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Extension of kinematic range in IA by FOUR orders of magnitude will change QCD view on nuclear structure and parton dynamics

May lead to genuine surprises...

- No saturation of xg (x,Q²) ?
- Small fraction of diffraction ?
- Broken isospin invariance ?
- Flavour dependent shadowing ?

Expect saturation of rise at $\mathbf{Q}_{s}^{2} \approx \mathbf{xg} \, \boldsymbol{\alpha}_{s} \approx \mathbf{c} \, \mathbf{x}^{-\lambda} \mathbf{A}^{1/3}$ Precision QCD study of parton dynamics in nuclei Investigation of high density matter and QGP Gluon saturation at low x, in DIS region.

Nuclear Parton Distributions

Data	DIS IA	DIS vA	DY II	$dAu \ \pi^{\pm}$	dAu πº	p Base	Ref.
EPS09	+	-	+	-	+	MSTW	JHEP
DSSZ	+	+	+	+	+	CTEQ6	PRD
nCTEQ	+	-	+	-	-	CTEQ6	Prel.

*)

NLO QCD fits of nuclear correction factors with reference to a proton PDF set

Very restricted range of DIS measurements \rightarrow "no predictive power below x ~ 0.01" FGS Single pion data used to constrain the gluon – depends on fragmentation fct., thy uncertain No flavour decomposition (strange may be large, charm, bottom?) Further assumptions: no nuclear effects in D, isospin invariance, $\Delta \chi^2$ tolerances..

*) see also Hirai, Kumano, Nagai, 0709.3038 (2007)

Present nPDFs

DIS input data from NMC and SLAC

Frankfurt, Guzey, Strikhman, 1106.2091

 π^o input from RHIC

For full set of plots cf D.De Florian 1112.6324

Strong variations of results and just parametric behaviour at x < 0.01

Gluon and Sea at Low x in eA with the LHeC

In eA the gluon density may be enhanced proportional to $A^{1/3}$ – yet shadowing. A proof of saturation requires: ep AND eA to separate nuclear/collective effects from non-linear parton interactions AND $\alpha_s << 1 \rightarrow Q^2 >> M_p^2$ It is a unique program for the LHeC, as it needs high E_A and E_e

Detector

LHeC Detector Overview

Detector option 1 for LR and full acceptance coverage

Forward/backward asymmetry in energy deposited and thus in geometry and technology Present dimensions: LxD =14x9m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e),100m (γ,LR), -22.4m (γ,RR), +100m (n), +420m (p)

Detector installation study for IP2, reuse of L3 magnet as support for LHeC. estimated 30 months cf. LHeC CDR

Detector Magnets

Figure 13.13: Magnetic field of the magnet system of solenoid and the two internal superconducting dipoles at nominal currents (effect of iron ignored). The position of the peak magnetic field of 3.9 T is local due to the adjacent current return heads on top of the solenoid where all magnetic fields add up.

Dipole (for head on LR) and solenoid in common cryostat, perhaps with electromagnetic LAr

3.5T field at ~1m radius to house a Silicon tracker

Based on ATLAS+CMS experience

Property	Parameter	value	unit
Dimensions	Cryostat inner radius	0.900	m
	Length	10.000	m
	Outer radius	1.140	m
	Coil windings inner radius	0.960	m
	Length	5.700	m
	Thickness	60.0	$\mathbf{m}\mathbf{m}$
	Support cylinder thickness	0.030	m
	Conductor section, Al-stabilized NbTi/Cu + insulation	30.0 imes 6.8	mm^2
	Length	10.8	km
	Superconducting cable section, 20 strands	12.4×2.4	mm^2
	Superconducting strand diameter Cu/NbTi ratio = 1.25	1.24	$\mathbf{m}\mathbf{m}$
Masses	Conductor windings	5.7	t
	Support cylinder, solenoid section + dipole sections	5.6	t
	Total cold mass	12.8	t
	Cryostat including thermal shield	11.2	t
	Total mass of cryostat, solenoid and small parts	24	t
Electro-magnetics	Central magnetic field	3.50	Т
	Peak magnetic field in windings (dipoles off)	3.53	Т
	Peak magnetic field in solenoid windings (dipoles on)	3.9	Т
	Nominal current	10.0	kA
	Number of turns, 2 layers	1683	
	Self-inductance	1.7	Н
	Stored energy	82	MJ
	E/m, energy-to-mass ratio of windings	14.2	kJ/kg
	E/m, energy-to-mass ratio of cold mass	9.2	kJ/kg
	Charging time	1.0	hour
	Current rate	2.8	A/s
	Inductive charging voltage	2.3	V
Margins	Coil operating point, nominal / critical current	0.3	
	Temperature margin at 4.6 K operating temperature	2.0	K
	Cold mass temperature at quench (no extraction)	~ 80	K
Mechanics	Mean hoop stress	~ 55	MPa
	Peak stress	~ 85	MPa
Cryogenics	Thermal load at 4.6 K, coil with 50% margin	~ 110	W
	Radiation shield load width 50% margin	~ 650	W
	Cooling down time / quench recovery time	4 and 1	day
	Use of liquid helium	~ 1.5	g/s

Table 13.1: Main parameters of the baseline LHeC Solenoid providing $3.5\,\mathrm{T}$ in a free bore of $1.8\,\mathrm{m}$.

Silicon Tracker and EM Calorimeter

Figure 13.18: Tracker and barrel Electromagnetic-Calorimeter rz view of the baseline detector (Linac-Ring case).

LHeC-LHC: no pile-up, less radiation, smaller momenta apart from forward region

Liquid Argon Electromagnetic Calorimeter

Figure 13.30: x-y and r-z view of the LHeC Barrel EM calorimeter (green).

Inside Coil H1, ATLAS experience.

Barrel: Pb, 20 X_0 , 11m³

fwd/bwd inserts:

FEC: Si -W, $30 X_0, 0.3 m^3$

BEC: Si -Pb, $25 X_0, 0.3 m^3$

Figure 13.35: View of the parallel geometry accordion calorimeter (left) and simulation of a single electron shower with initial energy of 20 GeV (right).

GEANT4 Simulation Figure 13.36: LAr accordion calorimeter energy resolution for electrons between 10 and 400 GeV.

Hadronic Tile Calorimeter

E-Calo Parts		FEC1	FEC2		EMC		BEC2	BEC1
Min. Inner radius R	[cm]	3.1	21		48		21	3.1
Min. polar angle θ	[°]	0.48	3.2		6.6/168.9		174.2	179.1
Max. pseudorapidity	η	5.5	3.6		2.8/-2.3		-3.	-4.8
Outer radius	[cm]	20	46		88		46	20
z-length	[cm]	40	40		660		40	40
Volume	$[m^3]$	0.	.3		11.3		0.	.3
H-Calo Parts barrel				FHC4	HAC	BHC4		
Inner radius	[cm]			120	120	120		
Outer radius	[cm]			260	260	260		
z-length	[cm]			217	580	157		
Volume	$[m^3]$				121.2			
H-Calo Parts Inserts		FHC1	FHC2	FHC3		BHC3	BHC2	BHC1
Min. inner radius R	[cm]	11	21	48		48	21	11
Min. polar angle θ	[°]	0.43	2.9	6.6		169.	175.2	179.3
Max/min pseudorapid	lity η	5.6	3.7	2.9		-2.4	-3.2	-5.
Outer radius	[cm]	20	46	88		88	46	20
z-length	[cm]	177	177	177		117	117	117
Volume	$[m^3]$		4.2				2.8	

Outside Coil: flux return Modular. ATLAS experience.

3.37: Accordion and Tile Calorimeter energy resolution for pions with and without 14cm Al block.

Combined GEANT4 Calorimeter Simulation

Table 13.6: Summary of calorimeter dimensions.

The electromagnetic barrel calorimeter is currently represented by the barrel part EMC (LAr-Pb module); the setup reaches $X_0 \approx 25$ radiation length) and the movable inserts forward FEC1, FEC2 (Si-W modules $(X_0 \approx 30)$ and the backward BEC1, BEC2 (Si-Pb modules; $X_0 \approx 25$).

The hadronic barrel parts are represented by FHC4, HAC, BHC4 (forward, central and backward - Scintillator-Fe Tile modules; $\lambda_I \approx 8$ interaction length) and the movable inserts FHC1, FHC2, FHC3 (Si-W modules; $\lambda_I \approx 10$), BHC1, BHC2, BHC3 (Si-Cu modules, $\lambda_I \approx 8$) see Fig. 13.9.

How long does it take to build the LHeC

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	RF Proto Type Development		e t										
				RF Pro	oductio	n and T	est Sta	nd Ope	eration				
			Magn Prese	et ries									
					Magn	et Prod	uction	and Te	sting				
				Legal Prepa	ration								
						Civil E	nginee	ring					
									Infra- struct	ure			
										Install	ation		
												Opera	tion

From CDR 2012

For an overview:

The CDR: J.Phys.G: arXiv:1206.2013

Web page http://cern.ch/lhec

LHeC Meetings: <u>http://indico.cern.ch/categoryDisplay.py?categId=1874</u>

A recent brief overview paper: MPLA: arXiv:1305.2090 (OB,MK)

Conferences in 2013: LPCC (April), DIS Marseille, IPAC Shanghai, EPS Stockholm

Next workshop January 21/22 Chavannes - near CERN, no fee, please register: <u>https://indico.cern.ch/conferenceDisplay.py?confId=278903</u> Two sessions: Detector+Physics and Testfacility+Accelerator

Many thanks to all who participated in this development, not least from Birmingham

Future Rings at CERN^{*)}

100km with 20T provides 50 TeV per beam.

80km may not be clever due to Saleve, if placed below Lac Leman \rightarrow 100km?

New tunnel may host a Triple LEP Higgs facility.

LHeC to run with LHC and later with VHE-LHC

^{*) "}Civil Engineering Feasibility Studies for Future Ring Colliders at CERN", Contributed by O.Brüning, M.Klein, S.Myers, <u>J.Osborne</u>, L.Rossi, <u>C.Waaijer</u>, F.Zimmerman to IPAC13 Shanghai

Future Rings at CERN^{*)}

100km with 20T provides 50 TeV per beam.

80km may not be clever due to Saleve, if placed below Lac Leman \rightarrow 100km?

New tunnel may host a Triple LEP Higgs facility.

LHeC to run with LHC and later with VHE-LHC

^{*) "}Civil Engineering Feasibility Studies for Future Ring Colliders at CERN", Contributed by O.Brüning, M.Klein, S.Myers, <u>J.Osborne</u>, L.Rossi, <u>C.Waaijer</u>, F.Zimmerman to IPAC13 Shanghai

Time

LEP/LIBRARY

LEP Note 440

PRELIMINARY PERFORMANCE ESTIMATES FOR A LEP PROTON COLLIDER

S. Myers and W. Schnell

1. Introduction

ps

.....

This analysis was stimulated by news from the United States where very large $p\bar{p}$ and pp colliders are actively being studied at the moment. Indeed, a first look at the basic performance limitations of possible $p\bar{p}$ or pp rings in the LEP tunnel seems overdue, however far off in the future a possible start of such a p-LEP project may yet be in time. What we shall discuss is, in fact, rather obvious, but such a discussion has, to the best of our knowledge, not been presented so far.

We shall not address any detailed design questions but shall give basic equations and make a few plausible assumptions for the purpose of illustration. Thus, we shall assume throughout that the maximum energy per beam is 8 TeV (corresponding to a little over 9 T bending field in very advanced superconducting magnets) and that injection is at 0.4 TeV. The ring circumference is, of course that of LEP, namely 26,659 m. It should be clear from this requirement of "Ten Tesla Magnets" alone that such a

30 years from the first (p-LEP = LHC) paper to LS1

backup

Run 1 - Accumulation of Luminosity

CMS Integrated Luminosity, pp

Outstanding efficiency for luminosity recording by the experiments. Measured with beam scans and forward detectors to 2-4% precision!

Without the LHC there would be no (talking about the) future of HEP A major achievement by machine, experiments and theoretical PP.

Searches for New Physics BSM

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013 Model

MSUGRA/CMSSM

MSUGRA/CMSSM

MSUGRA/CMSSM

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_1^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_1^0$

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$

GGM (higgsino-bino NLSP)

GGM (higgsino NLSP)

 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$

GMSB (Ĩ NLSP)

GMSB (*l* NLSP)

Gravitino LSP

 $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$

 $\bar{\tilde{g}} \rightarrow t \bar{t} \tilde{\chi}_1^0$

GGM (bino NLSP)

GGM (wino NLSP)

Searches

Inclusive

gen.

3rd Ĩ n

3rd gen. squarks direct production

EW direct

Long-lived particles

RPV

Other

full data

partial data

full data

$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ e, μ , τ , γ Jets $\mathsf{E}_{\tau}^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$ Mass limit 0 2-6 jets Yes 20.3 $m(\tilde{q})=m(\tilde{g})$ ATLAS-CONF-2013-047 1.7 TeV 1 e, µ 3-6 jets Yes 20.3 1.2 TeV any $m(\tilde{q})$ ATLAS-CONF-2013-062 any $m(\tilde{q})$ 7-10 jets Yes 20.3 0 1.1 TeV 2-6 jets 0 Yes 20.3 740 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-047 0 2-6 jets Yes 20.3 1.3 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-047 1 e, µ 3-6 jets Yes 20.3 1.18 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ ATLAS-CONF-2013-062 2 e, µ 0-3 jets -20.3 ATLAS-CONF-2013-089 1.12 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 2 e, µ 2-4 jets 4.7 1.24 TeV $tan\beta < 15$ Yes 0-2 jets $tan\beta > 18$ 1-2 τ Yes 20.7 1.4 TeV ATLAS-CONF-2013-026 2γ 1.07 TeV $m(\tilde{\chi}_1^0) > 50 \, \text{GeV}$ Yes 4.8 $1 e, \mu + \gamma$ Yes 4.8 619 GeV $m(\tilde{\chi}_1^0) > 50 \, \text{GeV}$ ATLAS-CONF-2012-144 γ 1 *b* Yes 4.8 900 GeV m(X10)>220 GeV $m(\tilde{H})$ >200 GeV 2 e, µ (Z) 0-3 jets Yes 5.8 ATLAS-CONF-2012-152 690 GeV 10.5 m(g)>10⁻⁴ eV ATLAS-CONF-2012-147 0 mono-jet Yes 645 GeV 0 3 b Yes 20.1 1.2 TeV m(X10)<600 GeV ATLAS-CONF-2013-061 0 7-10 jets Yes 20.3 1.1 TeV $m(\tilde{\chi}_{1}^{0}) < 350 \, GeV$

$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$ $\tilde{\sigma} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+}$	0-1 e,μ 0-1 e,μ	3 b 3 b	Yes Yes	20.1 20.1	ğ 1.34 Te ğ 1.3 Te	$ \begin{array}{c} \mathbf{V} & \mathbf{m}(\tilde{\chi}_1^0) < 400 \text{GeV} \\ \mathbf{v} & \mathbf{m}(\tilde{\chi}_1^0) < 300 \text{GeV} \end{array} $	ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
$ \begin{array}{l} \overline{g} \rightarrow b \overline{t} \overline{\xi}_{1}^{+1} \\ \overline{b}_{1} \overline{b}_{1}, \overline{b}_{1} \rightarrow b \overline{t}_{1}^{0} \\ \overline{b}_{1} \overline{b}_{1}, \overline{b}_{1} \rightarrow t \overline{t}_{1}^{\pm} \\ \overline{t}_{1} \overline{t}_{1} (\text{light}), \overline{t}_{1} \rightarrow b \overline{t}_{1}^{\pm} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow b \overline{t}_{1}^{\pm} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{1} \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{1} \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{2} \overline{t}_{1} \overline{t}_{1} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{2} \overline{t}_{2} \overline{t}_{2} \rightarrow \overline{t}_{2} \\ \overline{t}_{2} \overline{t}_{2} \rightarrow \overline{t}_{2} \overline{t}_{2} \rightarrow \overline{t}_{2} \overline{t}_{2} \rightarrow \overline{t}_{2} \rightarrow \overline{t}_{2} \rightarrow \overline{t}_{2} \rightarrow \overline{t}_{2} $	0-1 e, μ 0 2 e, μ (SS) 1-2 e, μ 2 e, μ 0 1 e, μ 0 1 e, μ 0 3 e, μ (Z)	3 b 2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	ž 1.3 TeV Š1 100-620 GeV Š1 275-430 GeV Č1 275-430 GeV Č1 130-220 GeV Č1 130-220 GeV Č1 150-580 GeV Č1 200-610 GeV Č1 320-660 GeV Č1 90-200 GeV Č1 500 GeV Č2 250 GeV	$ \begin{array}{c} \hline m(\tilde{k}_{1}^{2}) < 300 \text{ GeV} \\ \hline m(\tilde{k}_{1}^{2}) > 200 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 2\pi(\tilde{k}_{1}^{2}) \\ m(\tilde{k}_{1}^{2}) = 55 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 55 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = m(\tilde{k}_{1}) - m(W) - 50 \text{ GeV}, m(\tilde{k}_{1}) < < m(\tilde{k}_{1}^{2}) \\ m(\tilde{k}_{1}^{2}) = 0 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 10 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 15 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 150 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 10 \text{ GeV} \\ m(\tilde{k}_{1}^{2}) = 10$	ATLAS-CONF-2013-061 1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-058 1308.2631 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
$ \begin{array}{c} \overline{\xi}_{2,\bar{\chi}_{1}}, \overline{\xi}_{2} \rightarrow 4\overline{1} + \overline{2} \\ \overline{\ell}_{1,\bar{\chi}_{1}}^{2} \overline{\ell}_{1,\bar{\chi}_{1}}^{2} - \overline{\ell}_{\bar{\chi}_{1}}^{2} \overline{\ell}_{1,\bar{\chi}_{1}}^{2} \overline{\ell}_{1,\bar{\chi}_{1}}^{2} - \overline{\ell}_{\bar{\chi}_{1}}^{2} \overline{\ell}_{1,\bar{\chi}_{1}}^{2} \overline{\ell}_{1,\bar{\chi}_$	2 e, µ 2 e, µ 2 r 3 e, µ 3 e, µ 1 e, µ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & \mathfrak{m}_{\{1\}}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{{m}_{\{1}}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{{m}_{\{1}(\mathfrak{m}_{\{1})}(\mathfrak{m}_{{m}_{{m}_{\{1}}(\mathfrak{m}_{{m}_{\{1})}(\mathfrak{m}_{{m}_{{m}_{\{1}}(\mathfrak{m}_{{m}_{{m}_{{m}_{{m}_{{m}_{{m}_{{m}_$	ATLAS-CONF-2013-029 ATLAS-CONF-2013-049 ATLAS-CONF-2013-039 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Direct $\tilde{X}_1^+ \tilde{X}_1^-$ prod., long-lived \tilde{X}_1^+ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{q}\tilde{q}, \tilde{X}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 $(e, \mu) \begin{array}{c} 1-2 \mu \\ 2 \gamma \\ 1 \mu, \text{ displ. vtx} \end{array}$	1 jet 1-5 jets - -	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	$ar{\chi}_1^{\pm}$ 270 GeV 832 GeV $ar{\chi}_1^{0}$ 475 GeV $ar{\chi}_1^{0}$ 230 GeV 1 $ar{q}$ 1.0 TeV	$\begin{array}{l} m(\tilde{k}_1^{i})-m(\tilde{k}_1^{0})=160 \ {\rm MeV}, \tau(\tilde{k}_1^{i})=0.2 \ {\rm ns} \\ m(\tilde{k}_1^{i})=100 \ {\rm GeV}, 10 \ \mu {\rm s} < \tau(\tilde{g}) < 1000 \ {\rm s} \\ 10 < {\rm tan}\beta < 50 \\ 0.4 < \tau(\tilde{k}_1^{0}) \ge 2 \ {\rm ns} \\ 1.5 < c\tau < 156 \ {\rm nm}, {\rm BR}(\mu)=1, \ m(\tilde{k}_1^{0})=108 \ {\rm GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{s}_{1}^{+1} \widetilde{x}_{1}, \ \tilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \ \tilde{x}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v}_{\tau} \\ \tilde{x}_{1}, \ \tilde{x}_{1}, \ \tilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \ \tilde{x}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v}_{\tau} \\ \tilde{x}_{1}^{+1} \widetilde{x}_{1}, \ \tilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \ \tilde{x}_{1}^{-} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow q q q \\ \tilde{g} \rightarrow \tilde{t}_{1} \ t, \ \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	\$\vec{r}\$. 1.6 \$\vec{r}\$. 1.1 TeV \$\vec{a}\$ \$\vec{a}\$ \$\vec{c}\$. 1.2 TeV \$\vec{r}\$ \$\vec{r}\$. 760 GeV \$\vec{x}\$ \$\vec{r}\$ \$\vec{c}\$. 916 GeV \$\vec{g}\$ \$\vec{r}\$ \$\vec{s}\$. 880 GeV	$\begin{array}{cccc} \mathbf{i1} \ \mathbf{TeV} & \lambda_{311}'=0.10, \lambda_{132}=0.05 \\ \lambda_{311}'=0.10, \lambda_{1(2)33}=0.05 \\ \mathbf{m}(\vec{q})=\mathbf{m}(\vec{g}), c_{TLSP}<1 \ \mathbf{mm} \\ \mathbf{m}(\vec{k}_1^T)>300 \ \mathrm{GeV}, \lambda_{121}>0 \\ \mathbf{m}(\vec{k}_1^T)>80 \ \mathrm{GeV}, \lambda_{133}>0 \\ \mathbf{BR}(t)=\mathbf{BR}(b)=\mathbf{BR}(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $\mathrm{m}(\chi){<}80~\mathrm{GeV}, \mathrm{limit}~\mathrm{of}{<}687~\mathrm{GeV}~\mathrm{for}~\mathrm{D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
√s = 7 TeV 1	√s = 8 TeV	√s = 8	3 TeV		10 ⁻¹ 1		

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

1308.1841

1208.4688

1209.0753

1211.1167

1308.1841

Reference

Prototypes for Ring dipoles Fabricated and tested by CERN (top) and Novosibirsk

LR recirculator dipoles and guadrupoles New requirements (aperture, field)? Combined apertures? Combined functions (for example, dipole + quad)? LR linac quadrupoles and correctors New requirements (aperture, field)? More compact magnets, maybe with at least two families for quadrupoles? Permanent magnets / superconducting for guads? A.Milanese, Chavannes workshop

Magnet Developments

1/2m dipole model Full scale prototype Quadrupole for Linac

number of turns per aperture	1/2/3
current density	0.7 A/ mm²
conductor material	copper
resistance	0.36 mΩ
power	1.1 kW
total power 20 / 40 / 60 GeV	642 kW
cooling	air

flux density in the gaps

magnetic length

vertical aperture

number of magnets

pole width

current

0.264 T 0.176 T 0.088 T

4.0 m

25 mm

85 mm

584

1750 A

3

Magnets for ERL test stand

Collaboration of CERN, Beijing, Daresbury, Novosibirsk)

Max Klein, Mainz, 6/2013

Higgs Physics with the LHeC

High precision partons and strong coupling to NNNLO remove QCD ("thy") uncertainties \rightarrow LHC facility may be transformed into precisionHiggs factory [σ (pp \rightarrow HX) = 50 pb]

NNLO pp-Higgs Cross Sections at 14 TeV

O.Brüning and M.Klein, "The Large Hadron Electron Collider	"
arXiv:1305.2090, MPLA A28(2013)16,1330011	

LHeC Higgs	CC (e^-p)	NC (e^-p)	$CC(e^+p)$
Polarisation	-0.8	-0.8	0
Luminosity $[ab^{-1}]$	1	1	0.1
Cross Section [fb]	196	25	58
Decay BrFraction	$N_{CC}^H e^- p$	$\mathcal{N}_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$
$H \rightarrow b\overline{b}$ 0.577	$113 \ 100$	$13 \ 900$	$3 \ 350$
$H \to c\overline{c}$ 0.029	5700	700	170
$H \to \tau^+ \tau^- 0.063$	12 350	1 600	370
$H \to \mu\mu$ 0.00022	50	5	_
$H \rightarrow 4l$ 0.00013	30	3	_
$H \rightarrow 2l 2\nu$ 0.0106	2080	250	60
$H \rightarrow gg$ 0.086	16 850	2050	500
$H \rightarrow WW = 0.215$	42 100	5150	$1 \ 250$
$H \rightarrow ZZ$ 0.0264	5 200	600	150
$H \to \gamma \gamma$ 0.00228	450	60	15
$H \rightarrow Z\gamma$ 0.00154	300	40	10

With L=O(10³⁴)cm⁻² s⁻¹ the LHeC becomes a high precision H facility complementary to LHC.

 $H \rightarrow bb \text{ to } 1\%$ cc, $\tau\tau$ under study

cf U.Klein. Talk at EPS Stockholm, July 2013

cleaner FS than pp, no pile-up, unique $VV \rightarrow Z!$