From HERA to the LHeC

Deep Inelastic Scattering QCD and Electroweak Physics Nuclear Physics New Physics: ep and pp at the LHC Higgs with the LHeC Accelerator and Detector Design Prospects

Max Klein – University of Liverpool Colloquium at Mainz, Gutenberg University , 25th of June, 2013

Deep Inelastic e/µp Scattering

The birth of DIS, 45 years ago..

Max Klein, Mainz, 6/2013

Neutral (NC) and Charged Current (CC) DIS Cross Sections

$$\begin{split} \sigma_{r,NC} &= \frac{d^2 \sigma_{NC}}{dx dQ^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{x} \mathbf{F_3} - \frac{y^2}{Y_-} \mathbf{F_L} \\ \mathbf{F_2^{\pm}} &= F_2 + \kappa_Z (-v_e \mp Pa_e) \cdot F_2^{\gamma Z} + \kappa_Z^2 (v_e^2 + a_e^2 \pm 2Pv_e a_e) \cdot F_2^Z \\ \mathbf{x} \mathbf{F_3^{\pm}} &= \kappa_Z (\pm a_e + Pv_e) \cdot x F_3^{\gamma Z} + \kappa_Z^2 (\mp 2v_e a_e - P(v_e^2 + a_e^2)) \cdot x F_3^Z \\ \kappa_Z (Q^2) &= Q^2 / [(Q^2 + M_Z^2)(4\sin^2\Theta\cos^2\Theta)] \\ (F_2, F_2^{\gamma Z}, F_2^Z) &= x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2)(q + \bar{q}) \\ (x F_3^{\gamma Z}, x F_3^Z) &= 2x \sum (e_q a_q, v_q a_q)(q - \bar{q}), \end{split}$$

Sensitive to sum or difference of q and anti-q Electroweak effects appear $O(10^{-4}Q^2/\text{GeV}^2)$. Charge and polarisation asymmetry effects. CC on protons are charge dependent. Flavour separation but of sums of up and down quarks. Propto $(1 \pm P_e)$.

 $\sigma_{r,CC} = \frac{2\pi x}{Y_+ G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{\mathrm{d}^2 \sigma_{CC}}{\mathrm{d}x \mathrm{d}O^2}$

 $\sigma_{r,CC}^{\pm} = \frac{1 \pm P}{2} (W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm})$

 $W_2^+ = x(\overline{U} + D), xW_2^+ = x(D - \overline{U})$

 $Y_{+}=1\pm(1-y)^{2}$

 $W_2^- = x(U + \overline{D}), xW_2^- = x(U - \overline{D})$

Neutral (NC) and Charged Current (CC) HERA Events

Max Klein, Mainz, 6/2013

High Intensity (low Q²) -- Medium Energies (polarised) -- Energy Frontier DIS

Max Klein, Mainz, 6/2013

Deep Inelastic Lepton-Hadron Scattering

Early and Recent ep Scattering HERA HERA's Legacy I - Achievements HERA's Legacy II - Open Questions The LHeC - One Slide x,Q^2 Ranges Physics Overview on the LHeC

Max Klein, Mainz, 6/2013

Prescott et al, 1978, $I_{3,R}^{e}=0$

Recent/Future ep Scattering

HERA Violation of Bj Scaling \rightarrow Gluon

HERA: construction 1985-1991 6.2 km ring accelerator(s) Superconducting p: $E_p = 460-920 \text{ GeV}$ Warm e: $E_e = 27.5 \text{ GeV}$, $|P_e| = 0.3..0.5$ Data delivery (0.6fb⁻¹): 1992-2007 L=1 (HERAI)-4 (HERAII) 10³¹ cm⁻²s⁻¹

E.Z.ANCIN ANSALOD

EUROPANETALLI - UN

HERA: Discovery of the Rise of F₂ Towards Low x

Max Klein, Mainz, 6/2013

20 years ago..

HERA's Legacy I - Achievements

Measurements on α_s , Basic tests of QCD: longitudinal structure function, jet production, γ structure Some 10% of the cross section is diffractive (ep \rightarrow eXp) : **diffractive partons; c,b quark distributions New concepts: unintegrated parton distributions (k_T) , generalised parton distributions (DVCS), PDFs** New limits for leptoquarks, excited electrons and neutrinos, quark substructure, RPV SUSY **Interpretation of** Tevatron+LHC measurements (high Et jet excess, M_W, searches, **Higgs**, ..)

M.Klein, R.Yoshida: **Collider Physics at HERA** Prog.Part.Nucl.Phys. 61 (2008) 343-393 and recent H1,ZEUS results A Recent review of **The Theory of Deep Inelastic Scattering**: J.Bluemlein arXiv:1208.6087 ProgPartNuclPhys 69(2013)28

HERA's Legacy II – Open Questions

 \rightarrow Need: much higher luminosity, higher energy, nuclear targets

...

Puzzle – charm multi-quark states

uuddcbar DESY 04-038 (2004) Not seen by ZEUS..

udccbar BESIII, arXiv:1303.5949 also seen by BELLE

60 GeV electron beam energy, L= 10^{33} cm⁻²s⁻¹, $\sqrt{s}=1.3$ TeV: $Q^2_{max}=10^6$ GeV², $10^{-6} < x < 1$ Recirculating linac (2 * 1km, 2*60 cavity cryo modules, 3 passes, energy recovery) Ring-ring as fall back. "SAPHIRE" 4 pass 80 GeV option to do mainly: $\gamma\gamma \rightarrow H$

Kinematics - LHeC and HERA

Max Klein, Mainz, 6/2013

Summary of the LHeC Physics Programme

CDR, arXiv:1211.4831 and 1211.5102 http://cern.ch/lhec

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x = 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

Ultra high precision (detector, e-h redundancy)	-	new insight
Maximum luminosity and much extended range	-	rare, new effects
Deep relation to (HL-) LHC (precision+range)	-	complementarity

QCD and Electroweak Physics

Mapping the Gluon Distribution Proton Quark Distributions Neutron Structure and Electron-Deuteron Scattering Vector Meson Production and Diffraction Weak Structure Functions and Asymmetries x,Q² Range in Lepton-Nucleus Scattering Nuclear Parton Distributions

4	Pre	cision Q	QCD and Electroweak Physics	DR	
	4.1	Inclusiv	ve Deep Inelastic Scattering		
		4.1.1	Cross Sections and Structure Functions		
		4.1.2	Neutral Current	ages	
		4.1.3	Charged Current	~D~.	
		4.1.4	Longitudinal Structure Function E-		
	4.2	Determ	ination of Parton Distributions		
	1.2	4.2.1	QCD Fit Ansatz		
		4.2.2	Valence Quarks		
		4.2.3	Strange Quarks		
		4.2.4	Top Quarks		
	4.3	Gluon I	Distribution	> nov	
	4.4	Prospec	ets to Measure the Strong Coupling Constant		J
		4.4.1	Status of the DIS Measurements of α_s		
	4.5	Electron	n-Deuteron Scattering		
	4.6	Charm	and Beauty production		
		4.6.1	Introduction and overview of expected highlights		
		4.6.2	Total production cross sections for charm, beauty and	l top quarks	
		4.6.3	Charm and Beauty production in DIS		
		4.6.4	Intrinsic Heavy Flavour		
		4.6.5	D^* meson photoproduction study		
	4.7	High p	p_t jets		
		4.7.1	Jets in <i>ep</i>		
		4.7.2	Jets in γA		
	4.8	Total I	photoproduction cross section		
	4.9	Electro	oweak physics		
		4.9.1	The context		
		4.9.2	Light Quark Weak Neutral Current Couplings .	···· th	
		4.9.3	Determination of the Weak Mixing Angle	· · · · · · · · · · .	-
5	Ne	w Phys	ics at Large Scales		
	5.1	New P	Physics in inclusive DIS at high Q^2		
		5.1.1	Quark substructure		
		5.1.2	Contact Interactions		
		5.1.3	Kaluza-Klein gravitons in extra-dimensions		
	5.2	Leptoc	quarks and leptogluons		
		5.2.1	Phenomenology of leptoquarks in ep collisions		
		5.2.2	The Buchmüller-Rückl-Wyler Model		
		5.2.3	Phenomenology of leptoquarks in pp collisions		
		5.2.4	Current status of leptoquark searches		
		5.2.5	Determination of LO properties		
		5.2.0	Leptogluons		
	5 2	Excitor	d leptops and other new heavy leptops		
	0.0	5.3.1	Excited Fermion Models		
		5.3.2	Simulation and Results		
		5.3.3	New leptons from a fourth generation		
	5.4	New p	hysics in boson-quark interactions		
		5.4.1	An LHeC-based γp collider		
		5.4.2	Anomalous Single Top Production at the LHeC B	ased γp Collider	
		5.4.3	Excited quarks in γp collisions at LHeC		
		5.4.4	Quarks from a fourth generation at LHeC		
		5.4.5	Diquarks at LHeC		
		5.4.6	Quarks from a fourth generation in Wq interaction	ns	
	5.5	Sensiti	Wity to a Higgs boson		
		5.5.1 E E O	Deservability of the signal		
		553	Probing Anomalous HWW Couplings at the LHe	С	
		0.0.0	Trobing Anomalous II w w Couplings at the Life		
6	Phy	ysics at	High Parton Densities		
	6.1	Physic	s at small x		
		6.1.1	Unitarity and QCD		
		6.1.2	Status following HERA data		
		6.1.3	Low- <i>x</i> physics perspectives at the LHC		
	-	6.1.4	Nuclear targets		
	6.2	Prospe	ects at the LHeC		
		6.2.1	Strategy: decreasing x and increasing A		
		6.2.2	Inclusive measurements		
		0.2.3	Exclusive r roduction		
		625	Jet and multi-jet observables parton dynamics on	d fragmentation	
		0.0.0			

Max Keen Interfer overvales, parton dynamics and nagmentation ...

Figure 4.17: Relative uncertainty of the gluon distribution at $Q^2 = 1.9 \text{ GeV}^2$, as resulting from an NLO QCD fit to HERA (I) alone (green, outer), HERA and BCDMS (crossed), HERA and LHC (light blue, crossed) and the LHeC added (blue, dark). Left: logarithmic x, right: linear x.

Precision measurement of gluon density to extreme $x \rightarrow \alpha_s$ Low x: saturation in ep? Crucial for QCD, LHC, UHE neutrinos! High x: xg and valence quarks: resolving new high mass states! Gluon in Pomeron, odderon, photon, nuclei.. Local spots in p? Heavy quarks intrinsic or only gluonic?

Valence Quarks - now

Valence Quarks - then

Max Klein, Mainz, 6/2013

linear x Bjorken

Deuterons and Light Sea Quark Asymmetry

d/u at low x from deuterons

Nice: Gribov relation and spectator tagging to get rid off shadowing and Fermi motion!! Max Klein, Mainz, 6/2013

F₂^{charm} and F₂^{beauty} at HERA and the LHeC

Hugely extended range and much improved precision (δM_c =60 HERA \rightarrow 3 MeV) will pin down heavy quark behaviour at and far away from thresholds, crucial for precision t,H.. Intrinsic Charm? In MSSM, Higgs is produced dominantly via bb \rightarrow H , but where is the MSSM.. Max Klein, Mainz, 6/2013

Low x Physics

Precision Measurements of various crucial observables (F_2 , F_L , J/ψ , diffraction

DGLAP → nonlinear evolution Saturation of the gluon density??

Nuclear Parton Distributions from eA

3-4 orders of magnitude extension of IA kinematic range

→ LHeC has huge discovery potential for new HI physics (bb limit, saturation.. will put nPDFs on completely new ground

New Physics: LHeC and LHC

Physics of the Quark-Gluon Plasma Grand Unification and the Strong Coupling Constant PDFs, xg and the Higgs Production in pp at the LHC PDFs, xg and the HL-LHC Discovery Reach The strange quark distribution in ep and pp Top Physics and Lepto-Quarks

Cf most recent: M.D'Onofrio New Physics with the LHeC, LPCC Workshop on LHeC 3/2013

Max Klein, Mainz, 6/2013

Relation of the LHeC and the LHC HI Program

High Precision DIS

 $Q^2 >> M_{Z,W}^2$, high luminosity, large acceptance **Unprecedented precision in NC and CC** Contact interactions probed to 50 TeV Scale dependence of sin² θ left and right to LEP

→ A renaissance of deep inelastic scattering ← Max Klein, Mainz, 6/2013

Solving a 30 year old puzzle: α_s small in DIS or high with jets? Per mille measurement accuracy Testing QCD lattice calculations Constraining GUT (CMSSM40.2.5) Charm mass to 3MeV, N³LO

NNLO pp-Higgs Cross Sections at 14 TeV

Calculated for scale of $M_{\rm H}/2$

Exp uncertainty

Bandurin (ICHEP12) Higgs physics at the LHC is limited by the PDF knowledge Max Klein, Mainz, 6/2013

Link to HL LHC, e.g. High Mass SUSY

With high energy and luminosity, the LHC search range will be extended to high masses, up to 4-5 TeV in pair production, and PDF uncertainties come in ~ 1/(1-x), CI effects?

Strange Quark Distribution

Initial study (CDR): Charm tagging efficiency of 10% and 1% light quark background in impact parameter Max Klein, Mainz, 6/2013

Strange Quark Distribution

HERA+ATLAS (W,Z data from 2010): Determination of strange/anti-down quark ratio: symmetric light sea? Obtain PDF constraints from LHC, but: no direct determinations (Q2,x), less precision, factorisation, BSM?

Max Klein, Mainz, 6/2013

Top Quark and Leptoquarks

The LHeC is a (single) top quark production factory, via Wb \rightarrow t. Top was never observed in DIS. With ep: top-PDF \rightarrow 6 flavour VFNS, precision M_t direct and from cross section, anomalous couplings [to be studied]

Leptoquarks (-gluons) are predicted in RPV SUSY, E6, extended technicolour theories or Pati-Salam.

The LHeC is the appropriate configuration to do their spectroscopy, should they be discovered at the LHC.

The LHeC Design and the Higgs

Ring-Ring and Linac-Ring Choice A Simulation of WW→H→bbar Higgs on ATLAS LHeC as a Higgs "Factory" Rates for LHeC and ILC CP Properties at the WW and ZZ Vertices

Higgs at the LHeC

Clean final state, no pile-up, low QCD bgd, uniquely WW and ZZ, small theory unc.ties

U. Klein, ICHEP12, Melbourne for the LHeC

Default

Full simulation of ep \rightarrow nu H X \rightarrow nu bbar X: reconstruction efficiency of 2.5%

With **polarised** electrons, 100 fb^{-1} - bb coupling measurement precision of 2-3%.

CP Higgs at the LHeC

In the SM the Higgs is a J^{PC}=0⁺⁺ state. One needs to measure the EV if CP is conserved, and the mixture of even and odd states if it is not.

S.Biswal et al, <u>PhysRevLett.109.261801</u> Max Klein, Mainz, 6/2013

 $H \rightarrow \gamma \gamma$

Discovery of H

 $H \rightarrow ZZ^* \rightarrow 4I$

LHeC at 10³⁴ Luminosity

parameter [unit]	LHeC		
species	e^-	$p, {}^{208}\text{Pb}^{82+}$	
beam energy (/nucleon) [GeV]	60	7000, 2760	
bunch spacing [ns]	25,100	25,100	
bunch intensity (nucleon) $[10^{10}]$	0.1 (0.2), 0.4	17(22), 2.5	
beam current [mA]	6.4(12.8)	860 (1110), 6	
rms bunch length [mm]	0.6	75.5	
polarization [%]	90	none, none	
normalized rms emittance $[\mu m]$	50	3.75(2.0), 1.5	
geometric rms emittance [nm]	0.43	0.50(0.31)	
IP beta function $\beta_{x,y}^*$ [m]	0.12(0.032)	0.1(0.05)	
IP spot size $[\mu m]$	7.2(3.7)	7.2(3.7)	
synchrotron tune Q_s		1.9×10^{-3}	
hadron beam-beam parameter	0.0001 (0.0002)		
lepton disruption parameter D	6 (30)		
crossing angle	0 (detector-integrated dipole		
hourglass reduction factor H_{hg}	0.91 (0.67)		
pinch enhancement factor H_D	1.35		
CM energy [TeV]	1300, 810		
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1 (10), 0.2		

Table 1: LHeC ep and eA collider parameters. The numbers give the default CDR values, with optimum values for maximum ep luminosity in parentheses and values for the ePb configuration separated by a comma.

LHeC Collaboration arXiv:1211:5102, see also O.Bruening and M.Klein arXiv:1305.2090, MPLA 2013 Max Klein, Mainz, 6/2013

LHeC Higgs Rates

LHeC Higgs	$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$	
Polarisation	-0.8	-0.8	0	
Luminosity $[ab^{-1}]$	1	1	0.1	
Cross Section [fb]	196	25	58	
Decay BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$	
$H \to b\overline{b}$ 0.577	$113 \ 100$	13 900	$3 \ 350$	
$H \to c\overline{c}$ 0.029	5 700	700	170	
$H \to \tau^+ \tau^- 0.063$	12 350	1 600	370	
$H \to \mu\mu$ 0.0002	2 50	5	_	
$H \to 4l$ 0.0001	3 30	3	_	
$H \rightarrow 2l2\nu$ 0.0106	2 080	250	60	
$H \to gg$ 0.086	16 850	2 050	500	
$H \rightarrow WW 0.215$	42 100	5150	$1 \ 250$	
$H \rightarrow ZZ \qquad 0.0264$	5200	600	150	
$H \to \gamma \gamma$ 0.0022	8 450	60	15	
$H \to Z\gamma$ 0.00154	4 300	40	10	

H-bbar coupling to 0.7% precision with 1ab-1, at an S/B of 1 – studies of t, c, .. to come The LHeC WW \rightarrow H cross section is as large as the ILC Z* \rightarrow ZH cross section (300fb)...

50pb LHC, HL-LHC + ep H and PDFs : transform the LHC facility into a genuine H factory

Technical Design of the LHeC and a Detector

Civil Engineering Components Interaction Region and Q1 A Detector for Precision DIS Physics Installation Study

Max Klein, Mainz, 6/2013

Civil Engineering

CDR: Evaluation of CE, analysis of ring and linac by Amber Zurich with detailed cost estimate [linac CE: 249,928 kSF..] and time: **3.5 years for underground works** using 2 roadheaders and 1 TBM

More studies needed for

Integration with all services (EL,CV, transport, survey etc). Geology Understanding vibration risks Environmental impact assessment

Tunnel connection in IP2

J.Osborne, Chavannes

Chapter 9 of CDR

9 System Design

9.1	Magn	ets for the Interaction Region
	9.1.1	Introduction
	9.1.2	Magnets for the ring-ring option
	9.1.3	Magnets for the linac-ring option
9.2	Accele	erator Magnets
	9.2.1	Dipole Magnets
	9.2.2	BINP Model
	9.2.3	CERN Model
	9.2.4	Quadrupole and Corrector Magnets
9.3	Ring-	Ring RF Design
	9.3.1	Design Parameters
	9.3.2	Cavities and Rivstrons
9.4	Linac	Ring RF Design
	9.4.1	Design Parameters
	9.4.2	Layout and RF powering
	9.4.3	Arc RF systems
9.5	Crab	crossing for the LHeC
	9.5.1	Luminosity Reduction
	9.5.2	Crossing Schemes
	9.5.3	RF Technology
9.6	Vacuu	m
	9.6.1	Vacuum requirements
	9.6.2	Synchrotron radiation
	9.6.3	Vacuum engineering issues
9.7	Beam	Pipe Design
	9.7.1	Requirements
	9.7.2	Choice of Materials for beampipes
	9.7.3	Beampipe Geometries
	9.7.4	Vacuum Instrumentation
	9.7.5	Synchrotron Radiation Masks
	9.7.6	Installation and Integration
9.8	Cryog	enics
	9.8.1	Ring-Ring Cryogenics Design
	9.8.2	Linac-Ring Cryogenics Design
	9.8.3	General Conclusions Cryogenics for LHeC
9.9	Beam	Dumps and Injection Regions
	9.9.1	Injection Region Design for Ring-Ring Option
	9.9.2	Injection transfer line for the Ring-Ring Option
	9.9.3	$60~{\rm GeV}$ internal dump for Ring-Ring Option $~$
	9.9.4	Post collision line for 140 GeV Linac-Ring option .
	9.9.5	Absorber for 140 GeV Linac-Ring option \ldots .
	9.9.6	Energy deposition studies for the Linac-Ring option
	9.9.7	Beam line dump for ERL Linac-Ring option
	9.9.8	Absorber for ERL Linac-Ring option

Components and Cryogenics

	[7
	Ring	Linac	
magnets			
number of dipoles	3080	3504	
dipole field [T]	0.013 - 0.076	0.046 - 0.264	
number of quadrupoles	968	1514	
RF and cryogenics			
number of cavities	112	960	
gradient [MV/m]	11.9	20	
linac grid power [MW]	-	24	
synchrotron loss compensation [MW]	49	23	
cavity voltage [MV]	5	20.8	
cavity R/Q [Ω]	114	285	Jlab:
cavity Q_0	-	$2.5 \ 10^{10}$	4 101
cooling power [kW]	5.4@4.2 K	30@2 K	

Need to develop LHeC cavity (cryo-module)

systems will consist of a complex task. Further cavities and cryomodules will require a limited R&D program. From this we expect improved quality factors with respect to today's state of the art. The cryogenics of the L-R version consists of a formidable engineering challenge, however, it is feasible and, CERN disposes of the respective know-how.

LHeC Detector Overview

Detector option 1 for LR and full acceptance coverage

Forward/backward asymmetry in energy deposited and thus in geometry and technology Present dimensions: LxD =14x9m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e),100m (γ,LR), -22.4m (γ,RR), +100m (n), +420m (p)

Detector installation study for IP2, reuse of L3 magnet as support for LHeC. Estimated 30 months

Time Schedule*)

LHeC is to operate synchronous with HL-LHC

LS3 requires 2-3 years for ATLAS+. It is the one extended time period, which will allow installation and connection of LHeC

*) LS3 \rightarrow schedule most likely shifted by +2 years

Prospects and Next Steps

The Conceptual Design Report LHeC Collaboration ECFA's Evaluation An ERL Test Facility for the LHeC Magnet Prototypes and Design Interaction Region and Beam Pipe

ISSN 0954-3899

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for

Machine and Detector LHeC Study Group

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) Energy Recovery Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) **Installation and Infrastructure** Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) **Precision QCD and Electroweak** Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

Published 600 pages conceptual design report (CDR) written by 150 authors from 60 Institutes. Reviewed by ECFA, NuPECC (long range plan), Referees invited by CERN. Published June 2012.

July 20 12

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, M.Kraemer⁷⁵, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰ V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, $\begin{array}{l} \text{K.Sampei}^{58}, \text{R.Sassot}^{09}, \text{E.Sauvan}^{04}, \text{M.Schaefer}^{75}, \text{U.Schneekloth}^{17}, \text{T.Schörner-Sadenius}^{17}, \text{D.Schulte}^{16}, \text{A.Senol}^{22}, \text{A.Seryi}^{44}, \text{P.Sievers}^{16}, \text{A.N.Skrinsky}^{40}, \text{W.Smith}^{27}, \text{D.South}^{17}, \text{H.Spiesberger}^{29}, \text{A.M.Stasto}^{48,d}, \text{M.Strikman}^{48}, \text{M.Sullivan}^{57}, \text{S.Sultansoy}^{03,e}, \end{array}$ Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski⁶⁶, f, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

LHeC Study group and CDR authors (Dec.2012)

About 200 Experimentalists and Theorists from 76 (+3) Institutes

ECFA Review 2007-2012

CERN SPC, [r]ECFA Mandate given in 2007 to work out the LHeC physics, detector and accelerator design(s) – looking back to 1994 CDR and referee process carefully evaluated by ECFA committee

We believe that such a comparison is desirable to promote the LHeC physics case by highlighting the uniqueness of its physics

programme, and by viewing it in a larger context of physics at the frontiers of highest energy, highest precision and highest densities.

Stressed: Link to LHC physics and operation, link to HEP, cost estimates, R&D, DIS community

It is our opinion that only the linac-ring option is viable. We point out that there are still important issues to be addressed concerning the physics potential, the accelerator and the detector.

We regard the design effort carried out on the machine as very valuable also for other projects.

Most important is to assemble a strong community in particle and nuclear physics to push further this challenging project, and to secure resources for the ensuing R&D projects towards the formulation of a TDR.

ECFA Statement ECFA/12/279 December 2012

...

Towards an LHeC ERL Test Facility at CERN

STRAWMAN OPTICS DESIGN FOR THE LHeC ERL TEST FACILITY

A. Valloni^{*}, O. Bruning, R. Calaga, E. Jensen, M. Klein, R. Tomas, F. Zimmermann, CERN, Geneva, Switzerland A. Bogacz, D. Douglas, Jefferson Lab, Newport News Virginia

cryomodule, the recirculator can deliver higher beam energy of 600 MeV.

Daresbury Workshop 22/23.1.:

- Collaboration: CERN, AsTEC, CI, JeffersonLab, U Mainz, +
- LHeC Parameters (C,Q,source,I) rather conservative
- Test Facility to develop full technology, key: cavity
- RF frequency chosen

http://cern.ch/lhec

Table 3: Future ERLs for electron-hadron colliders						
Parameter	JLab	BNL	CERN			
	MEIC	eRHIC	LHeC			
Energy [GeV]	5-10	20	60			
Frequency [MHz]	750	704	n×40			
# of passes	-	6	3			
Current/pass [mA]	3	50	6.6			
Charge [nC]	4	3.5	0.3			
Bunch Length [mm]	7.5	2.0	0.3			

Prototypes for Ring dipoles Fabricated and tested by CERN (top) and Novosibirsk

LR recirculator dipoles and guadrupoles New requirements (aperture, field)? Combined apertures? Combined functions (for example, dipole + quad)? LR linac quadrupoles and correctors New requirements (aperture, field)? More compact magnets, maybe with at least two families for quadrupoles? Permanent magnets / superconducting for guads? A.Milanese, Chavannes workshop

Magnet Developments

1/2m dipole model Full scale prototype Quadrupole for Linac

number of turns per aperture	1/2/3
current density	0.7 A/ mm²
conductor material	copper
resistance	0.36 mΩ
power	1.1 kW
total power 20 / 40 / 60 GeV	642 kW
cooling	air

flux density in the gaps

magnetic length

vertical aperture

number of magnets

pole width

current

0.264 T 0.176 T 0.088 T

4.0 m

25 mm

85 mm

584

1750 A

3

Magnets for ERL test stand

Collaboration of CERN, Beijing, Daresbury, Novosibirsk)

Max Klein, Mainz, 6/2013

Interaction Region Developments

Have optics compatible with LHC and $\beta^*=0.1m$ Head-on collisions mandatory \rightarrow High synchrotron radiation load, dipole in detector

Specification of Q1 – NbTi prototype (with KEK?) Revisiting SR (direct and backscattered), Masks+collimators Beam-beam dynamics and 3 beam operation studies

Optimisation: HL-LHC uses IR2 quads to squeeze IR1 ("ATS" achromatic telescopic squeeze) Start in IR3 – 10cm ok.

Beam pipe: in CDR 6m, Be, ANSYS calculations

Composite material R+D, prototype, support.. → Essential for tracking, acceptance and Higgs

Figure 9.32: 3-D view of the LR geometry showing contours of bending displacement [m].

Final Remarks

Searches for New Physics Theory and Experiment LHeC Physics in Q²,x Higgs with the LHeC Project Development A Summary Slide SLAC

Searching for new physics

Standard Model: remarkably successful description of known phenomena, **but** requires new physics at the (multi)TeV scale.

Three Generations of Matter

Supersymmetry

- Introduce heavy superpartners, scalar particles, light neutral Higgs
- More than100 parameters even in MSSM

Extra Dimensions

Large, warped, or universal extra dimensions
Might provide:

- Dark Matter candidate
- Solution to Hierarchy problem
- Unification of forces
- Searches for new heavy particles, black holes..

Strong EW symmetry breaking

- Modern variants of Technicolor
- Might provide:
 - Dark Matter
 - Hierarchy problem
- Possibly search for composite Higgs, new heavy vector bosons (Z', W'...), 4th generation of quarks

Composite (SUSY) theories

Composite Higgs and top

M.Froissart ICHEP ("Rochester") 1966

→ ?in 2015+?

 \rightarrow Quarks in 1969

Max Klein, Mainz, 6/2013

We like to see particle physics as driven by experiment ... Burt Richter

ZZ \rightarrow H ~10 times lower rate

Unique production mechanism (WW,ZZ) Clean experimental conditions: No pileup, simpler final state ...

LHeC at 10³⁴cm⁻²s⁻¹: arXiv:1211:5102

Nb: Cross section and luminosity as large as are projected for the ILC. Access to difficult channels ($\tau\tau$, cc – under study)

With its unique Higgs measurements and precision N³LO PDFs and $\delta\alpha_s$,

ep upgrade transforms the LHC facility into a precision Higgs factory.

[cf arXiv:1211:5102 + OB, MK: arXiv:1305:2090]

Higgs with the LHeC

LHeC Higgs	3	$CC(e^-p)$
Polarisation	-0.8	
Luminosity	$[ab^{-1}]$	1
Cross Sectio	on [fb]	196
Decay B	rFraction	$\mathrm{N}^{H}_{CC}~e^{-}p$
$H \rightarrow b\overline{b}$	0.577	$113 \ 100$
$H \to c\overline{c}$	0.029	$5\ 700$
$H \to \tau^+ \tau^-$	0.063	$12 \ 350$
$H \rightarrow \mu \mu$	0.00022	50
$H \rightarrow 4l$	0.00013	30
$H ightarrow 2l2 \nu$	0.0106	2080
$H \rightarrow gg$	0.086	16 850
$H \rightarrow WW$	0.215	$42\ 100$
$H \rightarrow ZZ$	0.0264	5 200
$H \rightarrow \gamma \gamma$	0.00228	450
$H \to Z\gamma$	0.00154	300

Rates for E_e =60 GeV, proportional to E_e Initial study for CDR:

H → bbar: selection efficiency: ~2.5% which gives 5000 events with S/B=1. corresponding to 0.7% coupling precision. [cf: CDR, U.Klein ICHEP12, B.Mellado LPCC]

Project Development

LHeC three years programme

Accelerator

SC RF, LTF, Q1, Optimisation, Lumi, Detector

IR, Technical Design, Installations Physics

Higgs, RPV SUSY, top, ..LHC

Project

Workshops, Collaboration..

The LHeC is a challenge worth developing for the future of HEP

The mandate for the technology development **includes studies and prototyping of the following key technical components:**

- Superconducting RF system for CW operation in an Energy Recovery Linac, (high Q0 for efficient energy recovery). The studies require design and prototyping of the cavity, couplers and cryostat.
- Superconducting magnet development of the insertion regions of the LHeC with three beams. The studies require the design and construction of short magnet models.
- Studies related to the experimental beam pipes with large beam acceptance in a high synchrotron radiation environment.
- The design and specification of an ERL test facility for the LHeC.
- The finalization of the ERL design for the LHeC including a finalization of the optics design, beam dynamic studies and identification of potential performance limitations.

The above technological developments require close collaboration between the relevant technical groups at CERN and external collaborators.

Given the rather tight personnel resource conditions at CERN the above studies should exploit where possible synergies within existing CERN studies (e.g. SPL and ESS SC RF, HL-LHC triplet magnet development and collaboration with ERL test facility outside CERN).

S.Bertolucci at Chavannes workshop 6/12 based on **CERN directorate's decision to include LHeC in the MTP**

Large Hadron Electron Collider - LHeC

Information on http://cern.ch/lhec

ep/A synchronous to pp/AA

- LHC is the only place for TeV energy DIS
- ~ ~60 GeV electron beam upgrade to the LHC
- DIS at TeV energies: $Q_{max}^2 10^6$, x > 10^{-6}
 - A new Higgs facility new detector

Noteable:

- Unprecedent precision (α_s to per mille)
- Complete unfolding of PDFs (1st time)
- Precision electroweak measurements
- Novel precision input for LHC physics
- BSM (RPV SUSY, e*, CI, lq resonances?)
- Quark Gluon Plasma initial formation

QCD

- Discovery/disproval of saturation at low x
- Less conventional partons (kt, diff., GPDs)
- Nuclear structure in huge kinematic range
- Top with 10pb cross section in DIS, tPDF

The LHeC is a new laboratory for energy frontier particle physics of unique character.

Ref's: CDR arXiv:1205:2913, summary: arXiv:1211.4831, relation to LHC: arXiv:1211:5102

can one build a 2-3-km long linac?

Backup

LR LHeC IR layout & SC IR quadrupoles

for colliding proton beam with common low-field

Silicon Tracker and EM Calorimeter

Figure 13.18: Tracker and barrel Electromagnetic-Calorimeter rz view of the baseline detector (Linac-Ring case).

LHeC-LHC: no pile-up, less radiation, smaller momenta apart from forward region

Hadronic Tile Calorimeter

E-Calo Parts		FEC1	FEC2		EMC		BEC2	BEC1
Min. Inner radius R	[cm]	3.1	21		48		21	3.1
Min. polar angle θ	[°]	0.48	3.2		6.6/168.9		174.2	179.1
Max. pseudorapidity	η	5.5	3.6		2.8/-2.3		-3.	-4.8
Outer radius	[cm]	20	46		88		46	20
z-length	[cm]	40	40		660		40	40
Volume	$[m^3]$	0.	.3		11.3		0.	.3
H-Calo Parts barrel				FHC4	HAC	BHC4		
Inner radius	[cm]			120	120	120		
Outer radius	[cm]			260	260	260		
z-length	[cm]			217	580	157		
Volume	$[m^3]$				121.2			
H-Calo Parts Inserts		FHC1	FHC2	FHC3		BHC3	BHC2	BHC1
Min. inner radius R	[cm]	11	21	48		48	21	11
Min. polar angle θ	[°]	0.43	2.9	6.6		169.	175.2	179.3
Max/min pseudorapid	lity η	5.6	3.7	2.9		-2.4	-3.2	-5.
Outer radius	[cm]	20	46	88		88	46	20
z-length	[cm]	177	177	177		117	117	117
Volume	$[m^3]$		4.2				2.8	

Outside Coil: flux return Modular. ATLAS experience.

3.37: Accordion and Tile Calorimeter energy resolution for pions with and without 14cm Al block.

Combined GEANT4 Calorimeter Simulation

Table 13.6: Summary of calorimeter dimensions.

The electromagnetic barrel calorimeter is currently represented by the barrel part EMC (LAr-Pb module); the setup reaches $X_0 \approx 25$ radiation length) and the movable inserts forward FEC1, FEC2 (Si-W modules $(X_0 \approx 30)$ and the backward BEC1, BEC2 (Si-Pb modules; $X_0 \approx 25$).

The hadronic barrel parts are represented by FHC4, HAC, BHC4 (forward, central and backward - Scintillator-Fe Tile modules; $\lambda_I \approx 8$ interaction length) and the movable inserts FHC1, FHC2, FHC3 (Si-W modules; $\lambda_I \approx 10$), BHC1, BHC2, BHC3 (Si-Cu modules, $\lambda_I \approx 8$) see Fig. 13.9.

Liquid Argon Electromagnetic Calorimeter

Figure 13.30: x-y and r-z view of the LHeC Barrel EM calorimeter (green).

Inside Coil H1, ATLAS experience.

Barrel: Pb, 20 X_0 , 11m³

fwd/bwd inserts:

FEC: Si -W, $30 X_0, 0.3 m^3$

BEC: Si -Pb, $25 X_0, 0.3 m^3$

Figure 13.35: View of the parallel geometry accordion calorimeter (left) and simulation of a single electron shower with initial energy of 20 GeV (right).

GEANT4 Simulation Figure 13.36: LAr accordion calorimeter energy resolution for electrons between 10 and 400 GeV.

The 10-100 GeV Energy Scale [1968-1986]

U.Klein, before June 12

The ignored Neutron

Neutron structure unknown in HERA range and below. Crucial to resolve its parton structure and to predict scattering on nucleons rather than proton targets.

Collider unique to en (p tag, diffraction)

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

From HERA to the LHeC

Deep Inelastic Scattering QCD and Electroweak Physics Nuclear Physics New Physics: ep and pp at the LHC Higgs with the LHeC Accelerator and Detector Design Prospects

Colloquium at Mainz, Germany, June 25th, 2013

Contact interactions (eeqq)

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- Reach for Λ (CI eeqq): 25-45 TeV with 10 fb⁻¹ of data depending on the model

Nuclear Physics with the LHeC

1. Nuclear Parton Distribution Functions 2. Satura

3. Quark Gluon Plasma, its initial and final states

Glasma?

QGP

Reconfinement
Impact on discovery/exclusion reach

- PDF uncertainties impact discovery / exclusion reach:
 - Total yields
 - Shape variations on discriminating quantities (in progress)

Note: impact of PDF uncertainties on SM background also not negligible However \rightarrow mitigated by usage of Control Regions and semi data-driven estimate

Linac Characteristics

Figure 10.11: View on the ERL placed inside the LHC ring and tangential to IP2. TI2 is the injection line into the LHC. The insert shows the view towards IP2, which currently houses the ALICE experiment, from the direction of the protons colliding with the electron beam incoming from behind.

Large Hadron Electron Collider - LHeC

Information on http://cern.ch/lhec

ep/A synchronous to pp/AA

- LHC is the only place for TeV energy DIS
- ~ ~60 GeV electron beam upgrade to the LHC
- DIS at TeV energies: $Q^2_{max}10^6$, x > 10^{-6}
 - A new Higgs facility new detector

Noteable:

- Unprecedent precision (α_s to per mille)
- Complete unfolding of PDFs (1st time)
- Precision electroweak measurements
- Novel precision input for LHC physics
- BSM (RPV SUSY, e*, CI, lq resonances?)
- Quark Gluon Plasma initial formation

QCD

- Discovery/disproval of saturation at low x
- Less conventional partons (kt, diff., GPDs)
- Nuclear structure in huge kinematic range
- Top with 10pb cross section in DIS, tPDF

The LHeC is a new laboratory for energy frontier particle physics of unique character.

Ref's: CDR arXiv:1205:2913, summary: arXiv:1211.4831, relation to LHC: arXiv:1211:5102