LHeC Detector Design

LHeC: $E_e=60 \text{ GeV}$ $E_p=7 \text{ TeV}$ CDR design 2012

Detector now including FCC-he

Tracker and Calorimeters

Project Development – Next Steps

For references, please consult **lhec.web.cern.ch**

LHeC CDR arXiv:1206.2913 J.Phys. G39 (2012) 075001 Max Klein University of Liverpool

for the LHeC Study Group

AT LA

FCC_eh: E_e=60 GeV E_p=50 TeV

HE LHC: E_p=14 TeV

Development of the LHeC Detector, DIS17, Brum, 5th of April 2017

Kinematics at LHeC

default energies

Kinematics at LHeC

Lower proton energy

Kinematics at LHeC

Lower electron energy

NC Cross Section Correlated Uncertainties (Q²=2 GeV²)

Figure 3.2: Neutral current cross section errors, calculated for $60 \times 7000 \,\text{GeV}^2$, resulting from scale uncertainties of the scattered electron energy $\delta E'_e/E'_e = 0.1$ %, of its polar angle $\delta \theta_e = 0.1 \,\text{mrad}$ and the hadronic final state energy $\delta E_h/E_h = 0.5$ %, at low $Q^2 = 2 \,\text{GeV}^2$ and correspondingly low x.

From LHeC CDR

NC Cross Section Correlated Uncertainties (Q²=20000 GeV²)

Figure 3.3: Neutral current cross section errors, calculated for $60 \times 7000 \,\text{GeV}^2$ unpolarised e^-p scattering, resulting from scale uncertainties of the scattered electron energy $\delta E'_e/E'_e = 0.1 \,\%$, of its polar angle $\delta \theta_e = 0.1 \,\text{mrad}$ and the hadronic final state energy $\delta E_h/E_h = 0.5 \,\%$, at large $Q^2 = 20000 \,\text{GeV}^2$ and correspondingly large x. Note that the characteristic behaviour of the relative uncertainty at large x, i.e. to diverge $\propto 1/(1-x)$, is independent of Q^2 , i.e. persistently observed at $Q^2 = 20000 \,\text{GeV}^2$ for example too.

From LHeC CDR

Detector in the CDR

kinematics and requirements

region of detector	backward	barrel	forward
approximate angular range / degrees	179 - 135	135 -45	45-1
scattered electron energy/GeV $$	3-100	10-400	50-5000
x_e	$10^{-7} - 1$	$10^{-4} - 1$	$10^{-2} - 1$
elm scale calibration in $\%$	0.1	0.2	0.5
elm energy resolution $\delta E/E$ in $\%~\cdot \sqrt{E/GeV}$	10	15	15
hadronic final state energy/GeV	3-100	3-200	3-5000
x_h	$10^{-7} - 10^{-3}$	$10^{-5} - 10^{-2}$	$10^{-4} - 1$
hadronic scale calibration in $\%$	2	1	1
hadronic energy resolution in $\%~\sqrt{E/GeV}$	60	50	40

Now: Higgs: maximum fwd acceptance (p direction), better hadronic resolution, crucial c and b tagging capabilities. Still muon tag only (but muon momentum for FCC-eh for H)

LHeC Detector in the CDR (2012)

Forward/backward asymmetry in energy deposited and thus in geometry and technology Present dimensions: LxD =14x9m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e), 100m (y,LR), -22.4m (y,RR), +100m (n), +420m (p)

Design Report 2012

arXiv:1206.2913

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) Installation and Infrastructure Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) **Precision QCD and Electroweak** Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

600 pages. Physics, Detector and Two Accelerator Options ring-ring which may be of interest in the HE-LHC context and linac-ring, the default LH(e)C

LHeC Study Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt¹⁶, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴² CDR authors

IV Detector

11	Det	ector Requirements	482
	11.1	Cost and magnets	. 483
	11.2	Detector acceptance	. 484
		11.2.1 Kinematic reconstruction	. 484
		11.2.2 Acceptance for the scattered electron	. 485
		11.2.3 Acceptance for the hadronic final state	. 487
		11.2.4 Acceptance at the High Energy LHC	489
		11.2.5 Energy resolution and calibration	. 491
		11.2.6 Tracking requirements	. 492
		11.2.7 Particle identification requirements	. 495
	11.3	Summary of the requirements on the LHeC detector	. 495
	_		
12	Cen	tral Detector	497
	12.1	Basic detector description	. 497
		12.1.1 Baseline detector layout	. 503
		12.1.2 An alternative solenoid placement - option B	. 505
	12.2	Magnet design	. 507
		12.2.1 Magnets configuration	. 507
		12.2.2 Detector solenoid	. 507
		12.2.3 Detector integrated e-beam bending dipoles	. 511
		12.2.4 Cryogenics for magnets and calorimeter	. 512
	12.3	Tracking detector	. 514
		12.3.1 Tracking Detector - Baseline Layout	. 515
		12.3.2 Performance	. 516
	10.4	12.3.3 Tracking detector design criteria and possible solutions	. 519
	12.4	Calorimetry	. 524
		12.4.1 The barrel electromagnetic calorimeter	. 525
		12.4.2 The hadronic barrel calorimeter	. 526
		12.4.3 Endcap calorimeters	. 529
	12.5	Calorimeter simulation	. 529
		12.5.1 The barrel LAr calorimeter simulation	. 530
		12.5.2 The barrel tile calorimeter simulation	. 531
		12.5.3 Combined liquid argon and tile calorimeter simulation	. 533
		12.5.4 Lead-Scintillator electromagnetic option	. 533
	10.0	12.5.5 Forward and backward inserts calorimeter simulation	. 537
	12.6	Calorimeter summary	. 545
	12.7	Muon detector	. 546
		12.7.1 Muon detector design	. 547
		12.7.2 The LHeC muon detector options	. 549
		12.1.3 FORWARD MUON extensions	. 550
	10.0	12.1.4 Muon detector summary	. 551
	12.8	Event and detector simulations	. 553
		12.0.1 Fyullao	. 555
		12.8.2 1 MeV neutron equivalent	. 554
		12.8.3 INVERTEEN TREIGNDOUR	. 555
		12.8.4 Uross checking	. 558

481

13 For	ward and Backward Detectors	561
13.1	Luminosity measurement and electron tagging	561
	13.1.1 Options	562
	13.1.2 Use of the main LHeC detector	562
	13.1.3 Dedicated luminosity detectors in the tunnel	563
	13.1.4 Small angle electron tagger	564
	13.1.5 Summary and open questions	566
13.2	Polarimeter	567
	13.2.1 Polarisation from the scattered photons	568
	13.2.2 Polarisation from the scattered electrons	569
13.3	Zero degree calorimeter	569
	13.3.1 ZDC detector design	569
	13.3.2 Neutron calorimeter	569
	13.3.3 Proton calorimeter	570
	13.3.4 Calibration and monitoring	571
13.4	Forward proton detection	571
14 Det	tector Assembly and Integration	577
14.1	Detector assembly on surface	578
14.2	2 Detector lowering and integration underground	578
14.3	Maintenance and opening scenario	579
14.4	Timelines	579

LHeC Detector in the CDR (1206.2913)

Detector Magnets

Figure 13.13: Magnetic field of the magnet system of solenoid and the two internal superconducting dipoles at nominal currents (effect of iron ignored). The position of the peak magnetic field of 3.9 T is local due to the adjacent current return heads on top of the solenoid where all magnetic fields add up.

Dipole (for head on LR) and solenoid in common cryostat, perhaps with electromagnetic LAr

3.5T field at ~1m radius to house a Silicon tracker

Based on ATLAS+CMS experience

Property	Parameter	value	unit
Dimensions	Cryostat inner radius	0.900	m
	Length	10.000	m
	Outer radius	1.140	m
	Coil windings inner radius	0.960	m
	Length	5.700	m
	Thickness	60.0	mm
	Support cylinder thickness	0.030	m
	Conductor section, Al-stabilized NbTi/Cu + insulation	30.0 imes 6.8	mm^2
	Length	10.8	km
	Superconducting cable section, 20 strands	12.4×2.4	mm^2
	Superconducting strand diameter Cu/NbTi ratio = 1.25	1.24	mm
Masses	Conductor windings	5.7	t
	Support cylinder, solenoid section $+$ dipole sections	5.6	t
	Total cold mass	12.8	t
	Cryostat including thermal shield	11.2	t
	Total mass of cryostat, solenoid and small parts	24	t
Electro-magnetics	Central magnetic field	3.50	Т
	Peak magnetic field in windings (dipoles off)	3.53	Т
	Peak magnetic field in solenoid windings (dipoles on)	3.9	Т
	Nominal current	10.0	kA
	Number of turns, 2 layers	1683	
	Self-inductance	1.7	Н
	Stored energy	82	MJ
	E/m, energy-to-mass ratio of windings	14.2	kJ/kg
	E/m, energy-to-mass ratio of cold mass	9.2	kJ/kg
	Charging time	1.0	hour
	Current rate	2.8	A/s
	Inductive charging voltage	2.3	V
Margins	Coil operating point, nominal / critical current	0.3	
	Temperature margin at 4.6 K operating temperature	2.0	K
	Cold mass temperature at quench (no extraction)	~ 80	K
Mechanics	Mean hoop stress	~ 55	MPa
	Peak stress	~ 85	MPa
Cryogenics	Thermal load at 4.6 K, coil with 50% margin	~ 110	W
	Radiation shield load width 50% margin	~ 650	W
	Cooling down time / quench recovery time	4 and 1	day
	Use of liquid helium	~ 1.5	g/s

Table 13.1: Main parameters of the baseline LHeC Solenoid providing $3.5\,\mathrm{T}$ in a free bore of $1.8\,\mathrm{m}$.

LHeC Detector 2016

Dimensions and Multitudes - LHeC

Tracker	FST_{pix}	FST_{strix}	CFT_{pix}	CPT_{pix}	CST_{strix}	CBT_{pix}	BST_{strix}	BST_{pix}
#Wheels	s 5		2 –		- 2		3	
#Rings/Wheel	2_{inner}	3_{outer}	3/4 –		_	3/4	3_{outer}	2_{inner}
#Layers	_	—	_	4	5	—	—	—
$ heta_{min/max}$ [⁰]	0.7	3.8	3.0	5.1	24/155	177.8	173.1	178.7
$\eta_{max/min}$	5.1	3.4	3.6	± 3.1	± 1.4	-3.6	-2.8	-4.5
$\operatorname{Si}_{_{pix/strix}} [m^2]$	6.9	9.5	2.8	5.4	33.7	2.8	5.7	4.1
Sum-Si $[m^2]$			70.	9 double laye	ers taken into ac	count		
Calo	FHC_{SiW}	FEC_{SiW}	EMC _{sa}	$\mathrm{EMC}_{SciPb/LAr}$		$\operatorname{HAC}_{SciFe}$		$\operatorname{BHC}_{\scriptscriptstyle SiFe}$
$\theta_{min/max}$ [⁰]	0.61	0.68	8/166		14.2/160		178.7	178.9
$\eta_{max/min}$	5.2	5.1	2.7/-2.1		2.1/-1.7		-4.5	-4.7
Volume $[m^3]$	6.7	1.6	15.1		165		1.6	5.8
Sum-Si $[m^2]$	197.4							

Installation Study

Detector fits in L3 magnet support

LHeC INSTALLATION SCHEDULE

Modular structure

Q1	Q2	Q3	Q4	Q5	Q 6	Q7	Q 8
	Q1	Q1 Q2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <th>Q1 Q2 Q3 I<th>Q1 Q2 Q3 Q4 I<!--</th--><th>Q1 Q2 Q3 Q4 Q5 I</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th></th>	Q1 Q2 Q3 I <th>Q1 Q2 Q3 Q4 I<!--</th--><th>Q1 Q2 Q3 Q4 Q5 I</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th>	Q1 Q2 Q3 Q4 I </th <th>Q1 Q2 Q3 Q4 Q5 I</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	Q1 Q2 Q3 Q4 Q5 I	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

LHeC Detector

FCC-eh Detector

Dimensions and Multitudes – FCC-eh

Tracker	FST_{pix}	FST_{strix}	CFT_{pix}	CPT_{pix}	CST_{strix}	CBT_{pix}	BST_{strix}	BST_{pix}
#Wheels	1	7	2	_	—	2	5	
#Rings/Wheel	2_{inner}	3_{outer}	3/4	—	—	3/4	3_{outer}	2_{inner}
#Layers	_	_	—	4	5	_	_	—
$\theta_{min/max}$ [⁰]	0.5	3.8	3.6	5.1	24/155	176.4	173.1	179.3
$\eta_{max/min}$	5.4	3.4	3.5	± 3.1	± 1.4	-3.5	-2.8	-5.2
$\operatorname{Si}_{pix/strix} [m^2]$	9.7	13.3	2.8	5.4	33.7	2.8	9.7	6.9
Sum-Si $[m^2]$	84.3 double layers taken into account							
Calo	FHC_{SiW}	FEC_{SiW}	EMC _s	$\mathrm{EMC}_{SciPb/LAr}$		$\operatorname{HAC}_{SciFe}$		$\operatorname{BHC}_{SiFe}$
$\theta_{min/max}$ [⁰]	0.3	0.4	5.6/173.4		8.6/167		179.4	179.6
$\eta_{max/min}$	6.0	5.6	3.0/-2.7		2.5/-2.2		-5.3	-5.6
Volume $[m^3]$	13.2	3.1	28.8		407		1.98	7.0
Sum-Si $[m^2]$	461							

Interaction Regions for ep with Synchronous pp Operation

Still work in progress: may not need half quad if L*(e) < L*(p)

Rogelio Tomas et al

Detector design: Inner Silicon Tracker (status 3/16)

More detailed designs for other components too. DD4HEP software developments.. An opportunity for R+D and building a novel, challenging 4π detector in the twenties. **Profit from HL LHC detector upgrades, also ILC, with no pileup and small radiation load**

LHeC Silicon Tracker

The LHeC Silicon Tracker

LHeC Calorimeters

Cut through Calorimeters at z=510cm

Outer radius: 3.6m

Software Status

Software based on DD4hep/DDG4 - pre-release software [AIDASoft/DD4hep]; Python, C++

LHeC/FCC detector geometry, material description, R/O description as needed, segmentations and surfaces - ingredients for reconstruction;

DDEve - event display tool for quality judgment and control ...

Follow the main developments & build a detector model answering physics questions (reuse of experience and implementations)

Collaboration inside the FCC-Software effort at CERN - information @ http:// fccsw.web.cern.ch/fccsw/

Synergies when following closer the FCC-SW initiative - new EDM, geometry/ material definitions based of DD4hep as well, using GAUDI for overall steering; aspects of commonly used tracking software (ACTS); fast and detailed simulation

Hardware optimisation according to latest R&D (HL-LHC ...)

$H \rightarrow bb$ in LHeC Detector

Next Steps

Interaction region update

Finish ep Detector software link to Higgs, top, PDF.. physics study

Technology choices for novel, high tech, high precision detector post HL-LHC

CDR for FCC-eh Detector (I/2018)

Update of LHeC Detector Design (IV/2018) – will include cost-energy-physics study

Many thanks to Andrea Gaddi, Hermann ten Kate, <u>Peter Kostka</u>, Ercan Pilcer, Brett Parker, Alessandro Polini, Stefan Russenschuck, RogelioTomas and many others

title

title

