The LHeC – an Experiment at the LHC

CDR: 1206.2913 J.Phys.G

to appear

Update:2007.14491, J.Phys.G

Max Klein, University of Liverpool, for the LHeC/FCC-eh Study Group

Circles in a circle W Kandinsky

The LHeC Project

Physics of DIS

Detector [Overview, Components]

Heavy Ion eA and AA Option

Summary

At this workshop

Oliver Bruening: Monday HL-LHC and LHeC Option

Bruce Mellado: Higgs Physics with ep

Provessin Site Pt.2 Pt.1 Meyriro Site

50 x 7000 GeV²: 1.2 TeV ep collider

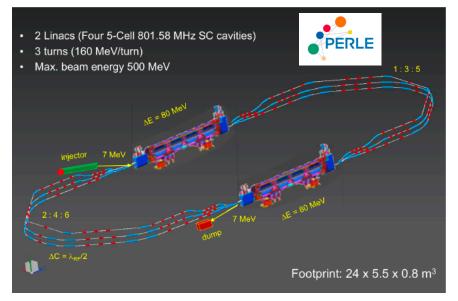
Operation: 2035+, Cost: O(1) BCHF

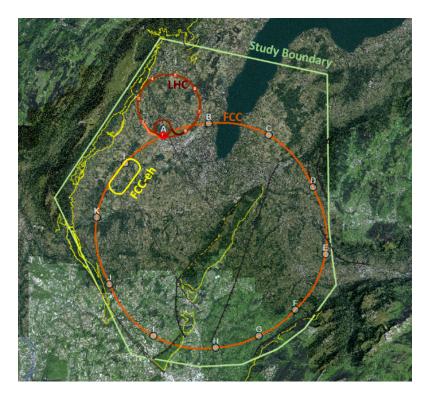
CDR: 1206.2913 J.Phys.G (550 citations)

Upgrade to 10³⁴ cm⁻²s⁻¹, for Higgs, BSM

CERN-ACC-Note-2018-0084 (ESSP)

arXiv:2007.14491, subm J.Phys.G


LHeC, PERLE and FCC-eh


Powerful ERL for Experiments @ Orsay CDR: 1705.08783 J.Phys.G CERN-ACC-Note-2018-0086 (ESSP)

Operation: 2025+, Cost: O(20) MEuro

LHeC ERL Parameters and Configuration I_e =20mA, 802 MHz SRF, 3 turns \rightarrow E_e =500 MeV \rightarrow first 10 MW ERL facility

BINP, CERN, Daresbury, Jlab, Liverpool, Orsay (IJC), +

60 x 50000 GeV²: 3.5 TeV ep collider

Operation: 2050+, Cost (of ep) O(1-2) BCHF

Concurrent Operation with FCC-hh

FCC CDR:

Eur.Phys.J.ST 228 (2019) 6, 474 Physics Eur.Phys.J.ST 228 (2019) 4, 755 FCC-hh/eh

Future CERN Colliders: 1810.13022 Bordry+

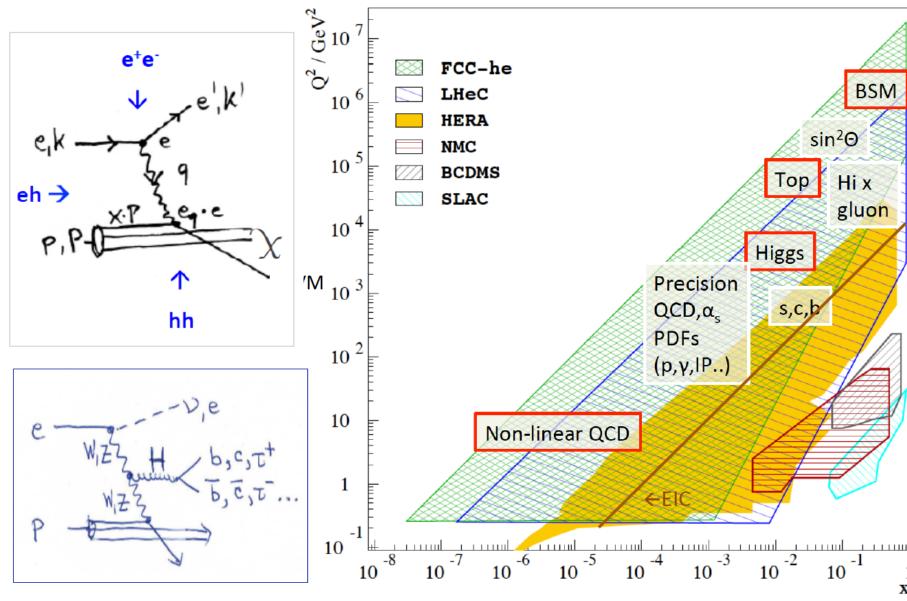
Published in 2020

CERN-ACC-Note-2020-0002 Geneva, July 28, 2020

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

arXiv:2007:14491 (400 pages, 300 authors)


To be submitted to J. Phys. G.

5 page summary: ECFA Newsletter Nr 5., August 20

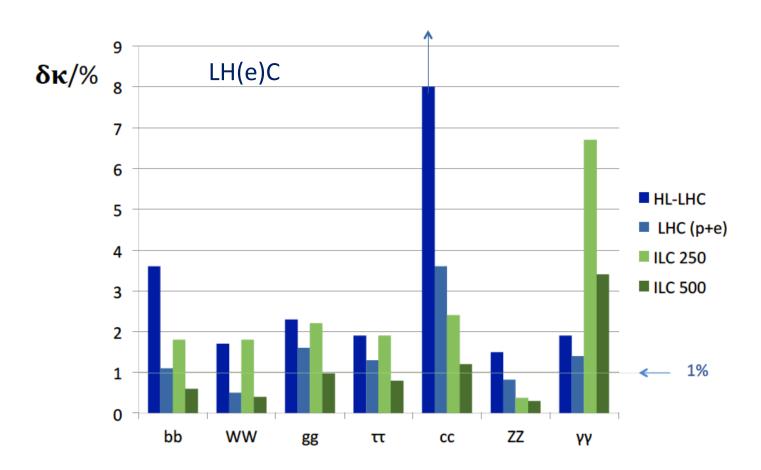
P. Agostini¹, H. Aksakal², H. Alan³, S. Alekhin^{4,5}, P. P. Allport⁶, N. Andari⁷, K. D. J. Andre^{8,9}, D. Angal-Kalinin^{10,11}, S. Antusch¹², L. Aperio Bella¹³, L. Apolinario¹⁴, R. Apsimon^{15,11}, A. Apyan¹⁶ G. Arduini⁹, V. Ari¹⁷, A. Armbruster⁹, N. Armesto¹, B. Auchmann⁹, K. Aulenbacher^{18,19}, G. Azuelos²⁰, S. Backovic²¹, I. Bailey^{15,11}, S. Bailey²², F. Balli⁷, S. Behera²³, O. Behnke²⁴ I. Ben-Zvi²⁵, M. Benedikt⁹, J. Bernauer^{26,27}, S. Bertolucci^{9,28}, S. S. Biswal²⁹, J. Blümlein²⁴, A. Bogacz³⁰, M. Bonvini³¹, M. Boonekamp³², F. Bordry⁹, G. R. Boroun³³, L. Bottura⁹, S. Bousson⁷, A. O. Bouzas³⁴, C. Bracco⁹, J. Bracinik⁶, D. Britzger³⁷, S. J. Brodsky³⁶, C. Bruni⁷, O. Brüning⁹, H. Burkhardt⁹, O. Cakir¹⁷, R. Calaga⁹, A. Caldwell³⁷, A. Calskan³⁸, S. Camarda⁹, N. C. Catalan-Lasheras⁹, K. Cassou³⁹, J. Cepila⁴⁰, V. Cetinkaya⁴¹, V. Chetvertkova⁹, B. Cole⁴². B. Coleppa⁴³, A. Cooper-Sarkar²², E. Cormier⁴⁴, A. S. Cornell⁴⁵, R. Corsini⁹, E. Cruz-Alaniz⁸, J. Currie⁴⁶, D. Curtin⁴⁷, M. D'Onofrio⁸, J. Dainton¹⁵, E. Daly³⁰, A. Das⁴⁸, S. P. Das⁴⁹, L. Dassa⁹. J. de Blas⁴⁶, L. Delle Rose⁵⁰, H. Denizli⁵¹, K. S. Deshpande⁵², D. Douglas³⁰, L. Duarte⁵³ K. Dupraz^{39,54}, S. Dutta⁵⁵, A. V. Efremov⁵⁶, R. Eichhorn⁵⁷, K. J. Eskola³, E. G. Ferreiro¹, O. Fischer⁵⁸, O. Flores-Sánchez⁵⁹, S. Forte^{60,61}, A. Gaddi⁹, J. Gao⁶², T. Gehrmann⁶³, A. Gehrmann-De Ridder^{63,64}, F. Gerigk⁹, A. Gilbert⁶⁵, F. Giuli⁶⁶, A. Glazov²⁴, N. Glover⁴⁶ R. M. Godbole⁶⁷, B. Goddard⁹, V. Gonçalves⁶⁸, G. A. Gonzalez-Sprinberg⁵³, A. Goyal⁶⁹, J. Grames³⁰ E. Granados⁹, A. Grassellino⁷⁰, Y. O. Gunaydin², Y. C. Guo⁷¹, V. Guzey⁷², C. Gwenlan²². A. Hammad¹², C. C. Han^{73,74}, L. Harland-Lang²², F. Haug⁹, F. Hautmann²², D. Hayden⁷⁵ J. Hessler³⁷, I. Helenius³, J. Henry³⁰, J. Hernandez-Sanchez⁵⁹, H. Hesari⁷⁶, T. J. Hobbs⁷⁷, N. Hod⁷⁸ G. H. Hoffstaetter⁵⁷, B. Holzer⁹, C. G. Honorato⁵⁹, B. Hounsell^{8,11,39}, N. Hu³⁹, F. Hug^{18,19} A. Huss^{9,46}, A. Hutton³⁰, R. Islam^{23,79}, S. Iwamoto⁸⁰, S. Jana⁵⁸, M. Jansova⁸¹, E. Jensen⁹, T. Jones⁸. J. M. Jowett⁹, W. Kaabi³⁹, M. Kado³¹, D. A. Kalinin^{10,11}, H. Karadeniz⁸², S. Kawaguchi⁸³, U. Kaya⁸⁴ R. A. Khalek⁸⁵, H. Khanpour^{76,86}, A. Kilic⁸⁷, M. Klein⁸, U. Klein⁸, S. Kluth³⁷, M. Köksal⁸⁸, F. Kocak⁸⁷, M. Korostelev²², P. Kostka⁸, M. Krelina⁸⁹, J. Kretzschmar⁸, S. Kuday⁹⁰, G. Kulipanov⁹¹ M. Kumar⁹², M. Kuze⁸³, T. Lappi³, F. Larios³⁴, A. Latina⁹, P. Laycock²⁵, G. Lei⁹³, E. Levitchev⁹¹, S. Levonian²⁴, A. Levy⁹⁴, R. Li^{95,96}, X. Li⁶², H. Liang⁶², V. Litvinenko^{25,26}, M. Liu⁷¹, T. Liu⁹⁷ W. Liu⁹⁸, Y. Liu⁹⁹, S. Liuti¹⁰⁰, E. Lobodzinska²⁴, D. Longuevergne³⁹, X. Luo¹⁰¹, W. Ma⁶², M. Machado¹⁰², S. Mandal¹⁰³, H. Mäntysaari^{3,104}, F. Marhauser³⁰, C. Marquet¹⁰⁵, A. Martens³⁹, R. Martin⁹, S. Marzani^{106,107}, J. McFayden⁹, P. Mcintosh¹⁰, B. Mellado⁹², F. Meot⁵⁷, A. Milanese⁹ J. G. Milhano¹⁴, B. Militsyn^{10,11}, M. Mitra¹⁰⁸, S. Moch²⁴, M. Mohammadi Najafabadi⁷⁶, S. Mondal¹⁰⁴ S. Moretti¹⁰⁹, T. Morgan⁴⁶, A. Morreale²⁶, P. Nadolsky⁷⁷, F. Navarra¹¹⁰, Z. Nergiz¹¹¹, P. Newman⁶, J. Niehues⁴⁶, E. W. Nissen⁹, M. Nowakowski¹¹², N. Okada¹¹³, G. Olivier³⁹, F. Olness⁷⁷, G. Olry³⁹ J. A. Osborne⁹, A. Ozansoy¹⁷, R. Pan^{95,96}, B. Parker²⁵, M. Patra¹¹⁴, H. Paukkunen³, Y. Peinaud³⁹ D. Pellegrini⁹, G. Perez-Segurana^{15,11}, D. Perini⁹, L. Perrot³⁹, N. Pietralla¹¹⁵, E. Pilicer⁸⁷, B. Pire¹⁰⁵ J. Pires¹⁴, R. Placakyte¹¹⁶, M. Poelker³⁰, R. Polifka¹¹⁷, A. Polini¹¹⁸, P. Poulose²³, G. Pownall²². Y. A. Pupkov⁹¹, F. S. Queiroz¹¹⁹, K. Rabbertz¹²⁰, V. Radescu¹²¹, R. Rahaman¹²², S. K. Rai¹⁰⁸ N. Raicevic¹²³, P. Ratoff^{15,11}, A. Rashed¹²⁴, D. Raut¹²⁵, S. Raychaudhuri¹¹⁴, J. Repond¹²⁶, A. H. Rezaeian^{127,128}, R. Rimmer³⁰, L. Rinolfi⁹, J. Rojo⁸⁵, A. Rosado⁵⁹, X. Ruan⁹², S. Russenschuck⁹, M. Sahin¹²⁹, C. A. Salgado¹, O. A. Sampayo¹³⁰, K. Satendra²³, N. Satyanarayan¹³¹, B. Schenke²⁵ K. Schirm⁹, H. Schopper⁹, M. Schott¹⁹, D. Schulte⁹, C. Schwanenberger²⁴, T. Sekine⁸³, A. Senol⁵¹ A. Seryi³⁰, S. Setiniyaz^{15,11}, L. Shang¹³², X. Shen^{95,96}, N. Shipman⁹, N. Sinha¹³³, W. Slominski¹³⁴, S. Smith^{10,11}, C. Solans⁹, M. Song¹³⁵, H. Spiesberger¹⁹, J. Stanyard⁹, A. Starostenko⁹¹, A. Stasto¹³⁶. A. Stocchi³⁹, M. Strikman¹³⁶, M. J. Stuart⁹, S. Sultansoy⁸⁴, H. Sun¹⁰¹, M. Sutton¹³⁷ L. Szymanowski¹³⁸, I. Tapan⁸⁷, D. Tapia-Takaki¹³⁹, M. Tanaka⁸³, Y. Tang¹⁴⁰, A. T. Tasci¹⁴¹, A. T. Ten-Kate⁹, P. Thonet⁹, R. Tomas-Garcia⁹, D. Tommasini⁹, D. Trbojevic^{25,57}, M. Trott¹⁴². I. Tsurin⁸, A. Tudora⁹, I. Turk Cakir⁸², K. Tywoniuk¹⁴³, C. Vallerand³⁹, A. Valloni⁹, D. Verney³⁹, E. Vilella⁸, D. Walker⁴⁶, S. Wallon³⁹, B. Wang^{95,96}, K. Wang^{95,96}, K. Wang¹⁰¹, Z. S. Wang¹⁴⁵, H. Wei¹⁴⁶, C. Welsch^{8,11}, G. Willering⁹, P. H. Williams^{10,11}, D. Wollmann⁹, C. Xiaohao¹³, T. Xu¹⁴⁷, C. E. Yaguna¹⁴⁸, Y. Yamaguchi⁸³, Y. Yamazaki¹⁴⁹, H. Yang¹⁵⁰, A. Yilmaz⁸², P. Yock¹⁵¹, C. X. Yue⁷¹, S. G. Zadeh¹⁵², O. Zenaiev⁹, C. Zhang¹⁵³, J. Zhang¹⁵⁴, R. Zhang⁶², Z. Zhang³⁹, G. Zhu^{95,96}, S. Zhu¹³², F. Zimmermann⁹, F. Zomer³⁹, J. Zurita^{155,156} and P. Zurita³⁵

Physics with Energy Frontier DIS

Deep Inelastic Scattering

Raison(s) d'etre of ep/eA at the energy frontier

Cleanest High Resolution
Microscope: QCD Discovery


Empowering the LHC/FCC Search Programme

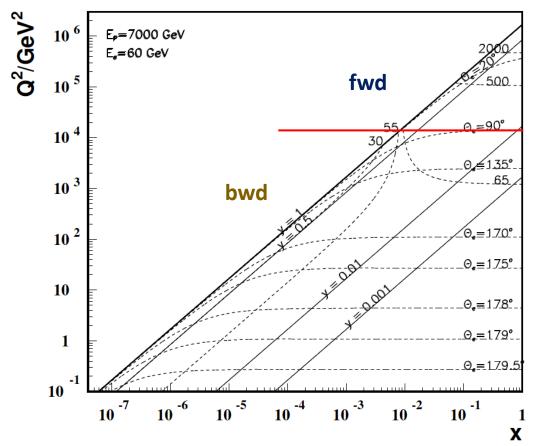
Transformation of LHC/FCChh into high precision Higgs facility

Discovery (top, H, heavy v's..) Beyond the Standard Model

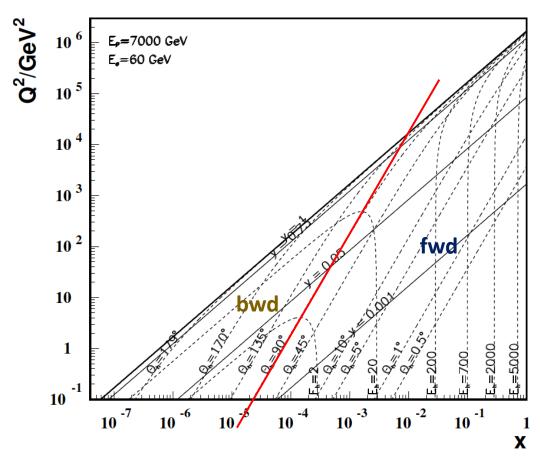
A Unique Nuclear Physics Facility

Higgs in ep and pp [LHC and FCC]

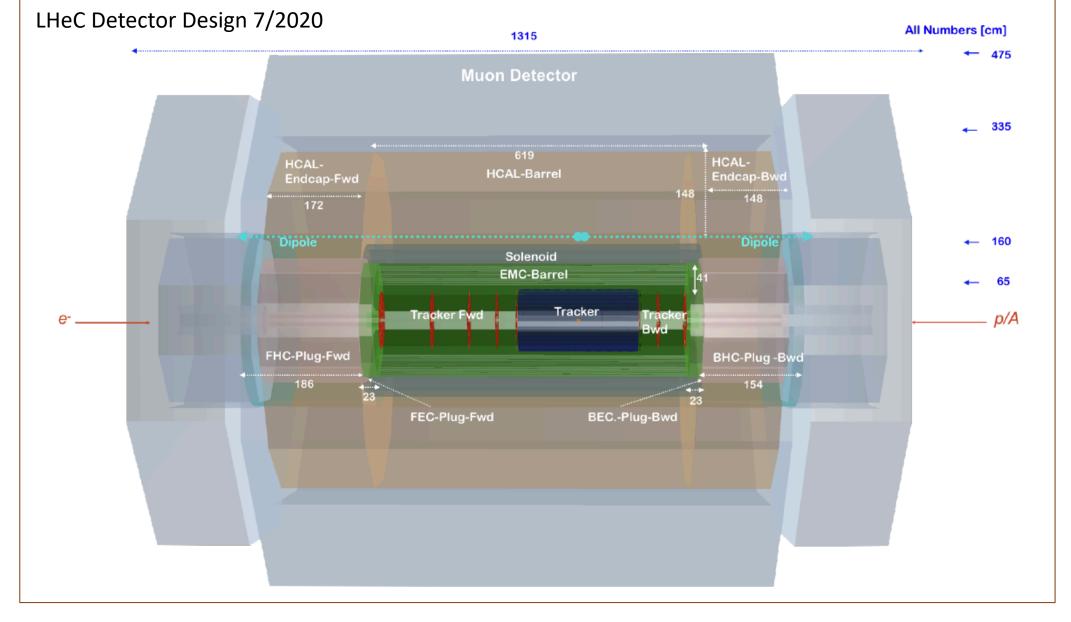
Fig.1: Results of prospect evaluations of the determination of Higgs couplings in the SM kappa framework for HL-LHC (dark blue), LHC with LHeC combined (p+e, light blue), ILC 250 (light green) and ILC-500 (dark green).


Collider	FCC-ee	FCC-eh
Luminosity (ab ⁻¹)	+1.5 @	2
	365 GeV	
Years	3+4	20
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	1.3	SM
$\delta g_{\rm HZZ}/g_{\rm HZZ}$ (%)	0.17	0.43
$\delta g_{\mathrm{HWW}}/g_{\mathrm{HWW}}$ (%)	0.43	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	0.61	0.74
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	1.21	1.35
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	1.01	1.17
$\delta g_{ m H au au}/g_{ m H au au}$ (%)	0.74	1.10
$\delta g_{ m H}$ μμ $/g_{ m H}$ μμ (%)	9.0	n.a.
$\delta g_{\mathrm{H}\Upsilon\Upsilon}/g_{\mathrm{H}\Upsilon\Upsilon}$ (%)	3.9	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	_	1.7
BR _{EXO} (%)	< 1.0	n.a.

Prospects for high precision measurements of Higgs couplings at FCC ee and ep. Note ee gets the width with Z recoil. ee is mainly ZHZ, while ep is mainly WWH: complementary also to pp


Kinematics: fwd: in p beam direction, bwd: e direction

LHeC - electron kinematics



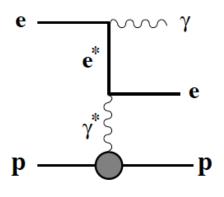
Electrons in bwd direction have low energy ($E'_e < E_e$ beam) in fwd direction high energy up to Ep, Rutherford backscattering $Q^2=1~GeV^2$ is 179°, or eta =4.74 = In tan theta/2, ~ E_e^2 !

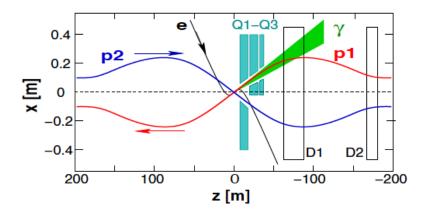
Hadrons in bwd direction have low energy $E_h < E_e$ beam in fwd direction hadrons carry energy up to E_p beam

→ Asymmetric energy coverage of LHeC detector. Fwd region: resembles hh conditions

No pile up, low radiation wrt pp; high precision through overconstrained kinematics: e-h; modular for rapid installation Tracker radius $40 \rightarrow 60$ cm, B 3.5T; LxD =13 x 9m² [CMS 21 x 15m², ATLAS 45 x 25 m²]..

IV	L	Detector	481
11	Det	ector Requirements	482
	11.1	Cost and magnets	. 483
		Detector acceptance	
		11.2.1 Kinematic reconstruction	
		11.2.2 Acceptance for the scattered electron	
		11.2.3 Acceptance for the hadronic final state	
		11.2.4 Acceptance at the High Energy LHC	
		11.2.5 Energy resolution and calibration	
		11.2.6 Tracking requirements	
		11.2.7 Particle identification requirements	. 495
	11.3	Summary of the requirements on the LHeC detector $\ \ldots \ \ldots \ \ldots$.	. 495
12	Cen	tral Detector	497
		Basic detector description	497
		12.1.1 Baseline detector layout	
		12.1.2 An alternative solenoid placement - option B	
	12.2	Magnet design	
		12.2.1 Magnets configuration	
		12.2.2 Detector solenoid	. 507
		12.2.3 Detector integrated e-beam bending dipoles	
		12.2.4 Cryogenics for magnets and calorimeter	
	12.3	Tracking detector	
		12.3.1 Tracking Detector - Baseline Layout	
		12.3.2 Performance	
		12.3.3 Tracking detector design criteria and possible solutions	
	12.4	Calorimetry	
		12.4.1 The barrel electromagnetic calorimeter	. 525
		12.4.2 The hadronic barrel calorimeter	
		12.4.3 Endcap calorimeters	
	12.5	Calorimeter simulation	
		12.5.1 The barrel LAr calorimeter simulation	
		12.5.2 The barrel tile calorimeter simulation	
		12.5.3 Combined liquid argon and tile calorimeter simulation	
		12.5.4 Lead-Scintillator electromagnetic option	. 533
		12.5.5 Forward and backward inserts calorimeter simulation	. 537
	12.6	Calorimeter summary	. 545
	12.7	Muon detector	. 546
		12.7.1 Muon detector design	. 547
		12.7.2 The LHeC muon detector options	. 549
		12.7.3 Forward muon extensions	. 550
		12.7.4 Muon detector summary	. 551
	12.8	Event and detector simulations	. 553
		12.8.1 Pythia6	. 553
		12.8.2 1 MeV neutron equivalent	. 554
		12.8.3 Nearest neighbour	
		12.8.4 Cross checking	
		12.8.5 Future goals	. 560


3	Forv	ward and Backward Detectors	561
	13.1	Luminosity measurement and electron tagging	561
		13.1.1 Options	
		13.1.2 Use of the main LHeC detector	
		13.1.3 Dedicated luminosity detectors in the tunnel	563
		13.1.4 Small angle electron tagger	
		13.1.5 Summary and open questions	566
	13.2	Polarimeter	
		13.2.1 Polarisation from the scattered photons	
		13.2.2 Polarisation from the scattered electrons	569
	13.3	Zero degree calorimeter	569
		13.3.1 ZDC detector design	
		13.3.2 Neutron calorimeter	569
		13.3.3 Proton calorimeter	
		13.3.4 Calibration and monitoring	571
	13.4	Forward proton detection	571
4			577
	14.1	Detector assembly on surface	578
		Detector lowering and integration underground	
	14.3	Maintenance and opening scenario	579
	14.4	Timelines	579



LHeC Detector in the CDR (1206.2913)

Bethe Heitler - Luminosity measurement at the LHeC

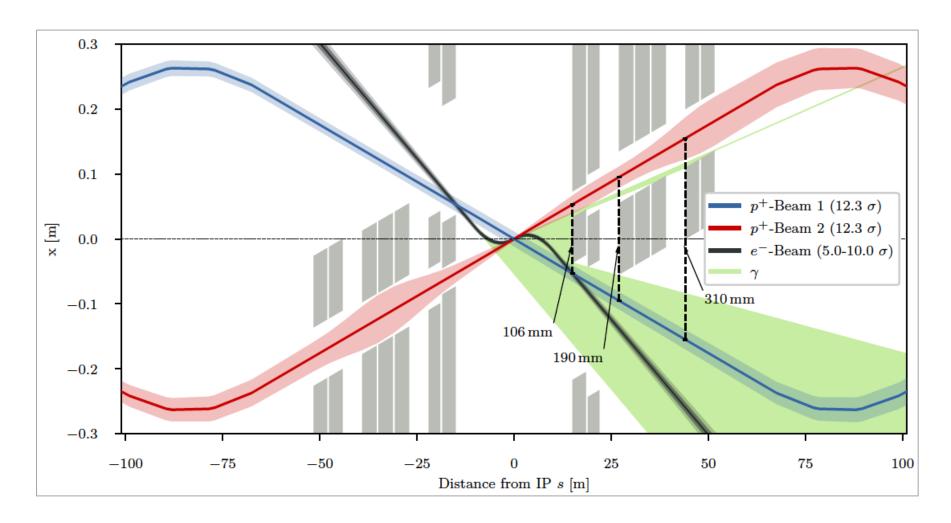
CDR 1206.2913 JPhysG39 075001(12) p561-566

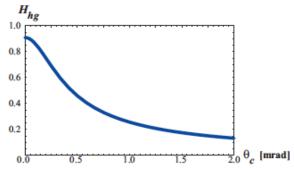
Forward	
Taggers:	

See Yuji Yamazaki at ICHEP and in 2007.14491

Method	Stat. error	Syst.error	Systematic error	components	Application
BH (γ)	$0.05\%/\mathrm{sec}$	1-5%	$\sigma(E \gtrsim 10 \text{GeV})$ 0.5%		Monitoring, tuning,
			acceptance, A	10%(1-A)	short term variations
			E-scale, pileup	0.5-4%	
BH (e)	$0.2\%/\mathrm{sec}$	3 - 6%	$\sigma(E \gtrsim 10 { m GeV})$	0.5%	Monitoring, tuning,
			acceptance	2.5-5%	short term variations
			background	1%	
			E-scale	1%	
QEDC	$0.5\%/\mathrm{week}$	1.5%	σ (el/inel)	1%	Absolute \mathcal{L} ,
			acceptance 1%		global normalisation
			vertex eff.	0.5%	
			E-scale	0.3%	
NC DIS	0.5%/h	2.5%	$\sigma \ (y < 0.6)$	2%	Relative \mathcal{L} ,
			acceptance	1%	mid-term variations
			vertex eff.	1%	
			E-scale	0.3%	

LR: photon detector ← acceptance 95%


→ Luminosity from BH photons to 1%

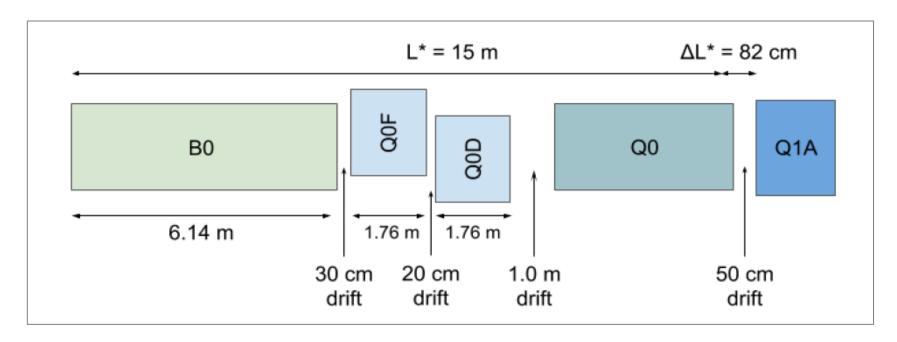

BH to another order

... BH(e), QCDC, F₂ as cross checks

Table 13.1: Dominant systematics for various methods of luminosity measurement.

3-beam ep/eA Interaction Region

$$H_{hg} = \frac{\sqrt{\pi}ze^{z^2}\operatorname{erfc}(z)}{S},$$


$$z \equiv 2\frac{(\beta_e^*/\sigma_{z,p})(\epsilon_e/\epsilon_p)}{\sqrt{1 + (\epsilon_e/\epsilon_p)^2}}S$$

$$S \equiv \sqrt{1 + \frac{\sigma_{x,p}^2\theta_c^2}{8\sigma_p^*^2}}.$$

Synchronous ep/pp operation! Non-interacting p beam to freely pass: aperture Matching e and p beam sizes (experience from HERA, also for magnet placement)

Head-on collisions →
Dipole magnet before
Hadron Calorimeter

LHeC IR modified for dual purpose

Optimisation of synchrotron radiation (power and E_{crit})

		LHeC	HERA
E crit	keV	270	150
Synra	d		
Powe	r kW	30	28

Detector dipole

Staggered quads

Half-quad (NC)

First of triplet gaudrupoles

For ep/A: synchronous with pp/AA in GPDs and LHCb – keep non-colliding beam apart with option of pp/AA the non-colliding beam needs to be kept inside pipe: then: shift transversely (as in regular injection mode) and possibly in time For pp/AA in IP2: no electron beam in. Collisions at nominal IP (or shifted by 25/4ns)

LHeC (CDR) Solenoid 3.5 T, 2.24 m OD, 7.1 m L $(LH_{\bullet}O)$

It will look like.....a stretched and squeezed ATLAS solenoid,

2 T scaled up to 3.5T (2 layer coil, slightly less free bore but a bit longer)

Relatively small bore but long, and efficient coil with 1.8 m free bore, 7.1 m long

≈ 11 km Al stabilized NbTi/Cu superconductor for 10 kA

H ten Kate (EP-RD, 16.3.18)

≈ 80 MJ stored energy and ≈ 24 t mass including cryostat.

No specific R&D needed, except detailed analysis of the dipole load case

- Design concept: minimum cost, R&D and risk, relies on present technology for detectors magnets
- 3.5 T Solenoid & 2 Dipoles in same cryostat around EMC, Muon tagging chambers in outer layer
- Solenoid and dipoles have a common support cylinder in a single cryostat; free bore of 1.8 m; extending along the detector with a length of 10 m.

For magnet specs, see CDR: arXiv:1206.2913

> New ideas on thin magnets cf. E Perez at FCC workshop

Dipole Fwd-HCald Insert Electromagnetic Calorimeter Tracker Bwd

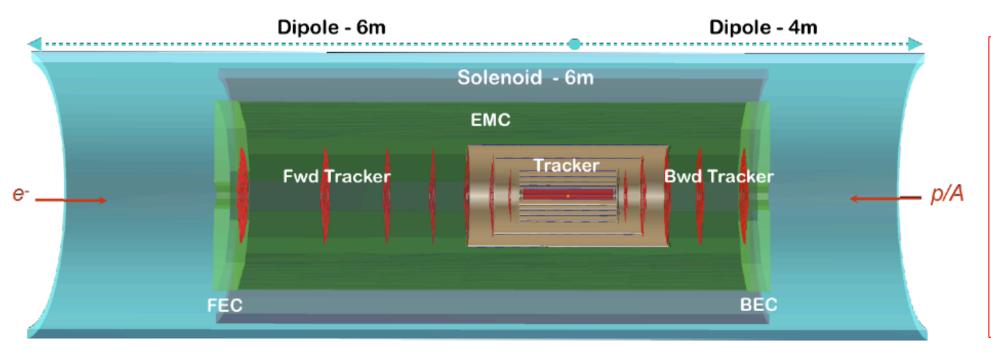
Barrel Calorimeters

Calo (LHeC)	EMC			
	Barrel	Ecap Fwd	Barrel	Ecap Bwd
Readout, Absorber	Sci,Pb	Sci,Fe	Sci,Fe	Sci,Fe
Layers	38	58	45	50
Integral Absorber Thickness [cm]	16.7	134.0	119.0	115.5
$\eta_{ m max},\eta_{ m min}$	2.4, -1.9	1.9, 1.0	1.6, -1.1	-1.5, -0.6
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	12.4/1.9	46.5/3.8	48.23/5.6	51.7/4.3
Λ_I / X_0	$X_0 = 30.2$	$\Lambda_I = 8.2$	$\Lambda_I = 8.3$	$\Lambda_I = 7.1$
Total area Sci [m ²]	1174	1403	3853	1209

LHeC Calorimeters

Complete coverage to +- 5 in (pseudo)rapidity

Central Region: 2012: LAr, 2020 Sci/Fe option.


Forward Region: dense, high energy jets of few TeV

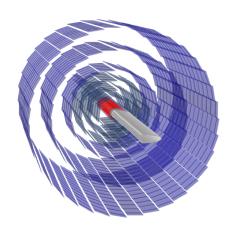
H → bb and other reactions demand resolution of HFS

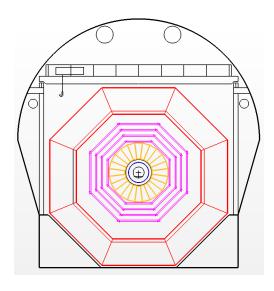
Backward Region: in DIS only deposits of $E < E_e$

Forward/Backward Calorimeters

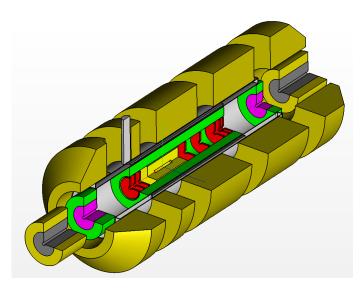
Calo (LHeC)	FHC Plug Fwd	FEC Plug Fwd	BEC Plug Bwd	BHC Plug Bwd
	Trug Fwu	Tiug Fwu	Tiug Dwu	T lug Dwu
Readout, Absorber	$_{ m Si,W}$	$_{ m Si,W}$	$_{ m Si,Pb}$	$_{ m Si,Cu}$
Layers	300	49	49	165
Integral Absorber Thickness [cm]	156.0	17.0	17.1	137.5
$\eta_{ m max},\eta_{ m min}$	5.5, 1.9	5.1, 2.0	-1.4, -4.5	-1.4, -5.0
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	51.8/5.4	17.8/1.4	14.4/2.8	49.5/7.9
Λ_I / X_0	$\Lambda_I = 9.6$	$X_0 = 48.8$	$X_0 = 30.9$	$\Lambda_I = 9.2$
Total area Si [m ²]	1354	187	187	745

Inner Tracker

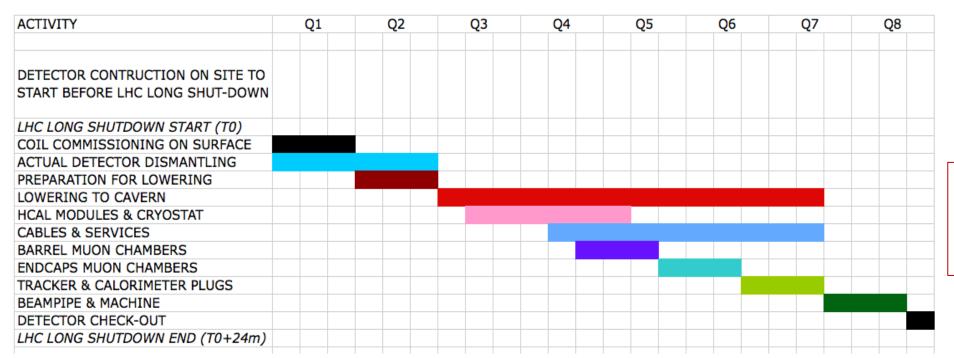

Rapidity to ~5


 $r_0 = 60 \text{ cm}$

impact resolution 5-10 μm


40.7 m² Si

Tracker (LHeC)	Fwe	d Tracker	Bw	Bwd Tracker		
	pix p	ix _{macro} strip	pix _{macro}	strip	(incl. Tab. 12.1)	
$\eta_{ m max}, \eta_{ m min}$	5.3,2.6	3.5,2.2 3.1,1.6	-4.6, -2.5	-2.9, -1.6	5.3,-4.6	
Wheels	2	1 3	2	4		
Modules/Sensors	180	180 860	72	416	10736	
Total Si area [m ²]	0.8	0.9 4.6	0.4	1.8	40.7	
Read-out-Channels [10 ⁶]	404.9	68.9 26.4	27.6	10.6	2934.2	
pitch $^{r-\phi}$ $[\mu m]$	25	100 100	100	100		
pitch ^z $[\mu m]$	50	$400 50k^{2)}$	400	$10k^{1)}$		
Average X_0/Λ_I [%]	6	.7 / 2.1	6	.1 / 1.9		
incl. beam pipe [%]		-		•	40 / 25	


Installation Study

Detector fits in L3 magnet support

LHeC INSTALLATION SCHEDULE

Modular structure

Detector Installation possible within about two-years shutdown: pre-mounting on surface

Andrea Gaddi, L Herve et al arXiv:2007.14491

Integration of eA and AA Detector Concepts

Could one merge the LHeC (2007.14491) and a novel Heavy Ion detector ("A3", 1902.01211) concepts?

What we can learn in an ep/eA collider

We do not have a QUANTITATIVE required for A-A and understanding of the nuclear behaviour

The colliding objects

Early stages

Analyzing the medium

Gluons from saturated nuclei → Glasma? → QGP → Reconfinement

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

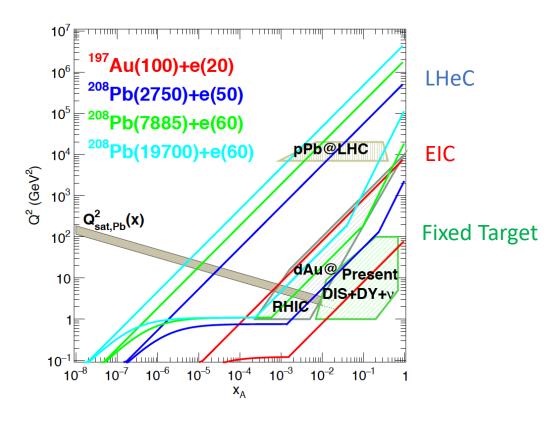
- Which factorization?
- How can a system behave as isotropised so fast?

Probing the medium through energetic particles:

- Dynamical mechanisms for opacity
- How to extract accurately medium parameters?

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

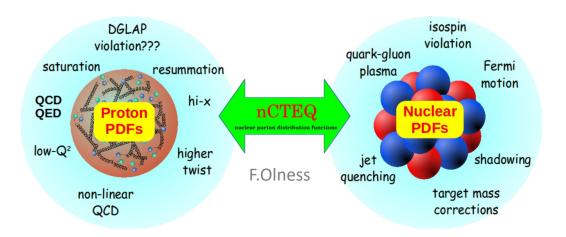

ep and eA:

- initial conditions for plasma formation
- how small can a system be and still show collectivity?

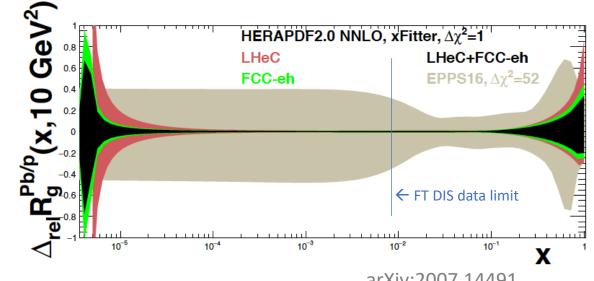
ep and eA:

- modification of radiation and hadronization in the nuclear medium
- initial effects on hard probes

Partons in Nuclei



Direct measurements of R:


$$R_i(x,Q^2) = \frac{f_i^{A}(x,Q^2)}{Af_i^{p}(x,Q^2)}, \quad i = u, d, s, c, b, g, \dots,$$

Resolution of complete quark and gluon structure (NC+CC) Disentanglement of nuclear + parton dynamic effects Deep into saturation region with small strong coupling (pQCD)

Complexity of (de) confinement in proton and nuclei

Direct determination of R_g with proton and lead data, full error

arXiv:2007.14491

New paradigm: small systems

Totally unexpected:

the discovery of correlations -ridge, flow- in small systems pA & pp

- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Two serious contenders remain today:

- initial state: quantum correlations as calculated by CGC
- final state: interactions leading to collective flow described with hydrodynamics => equilibration?

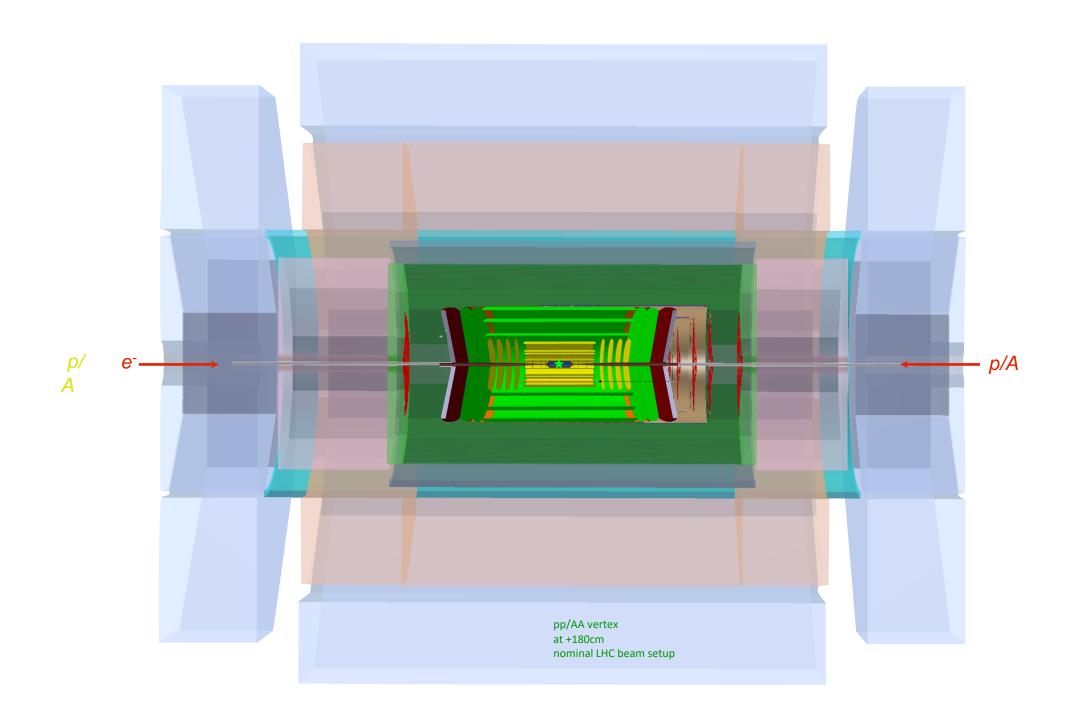
The old paradigm that

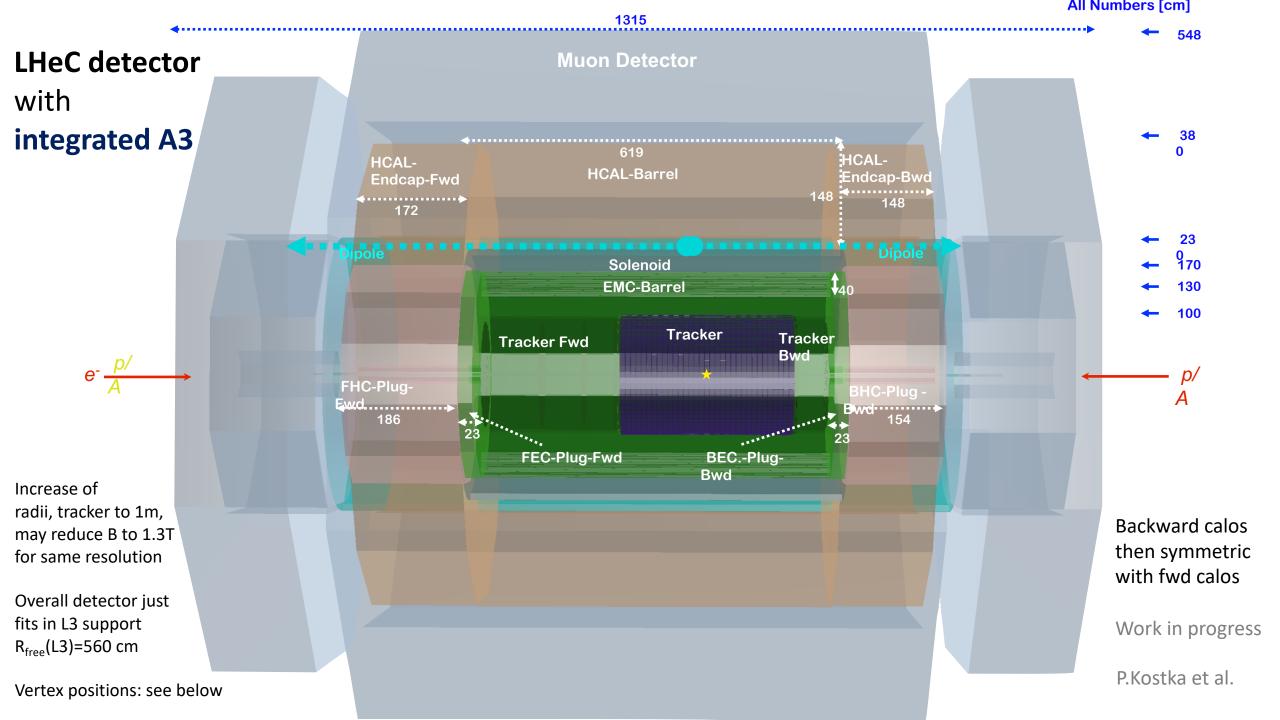
- we study hot & dense matter properties in heavy ion AA collisions
- cold nuclear matter modifications in pA
- and we use pp primarily as comparison data appears no longer sensible

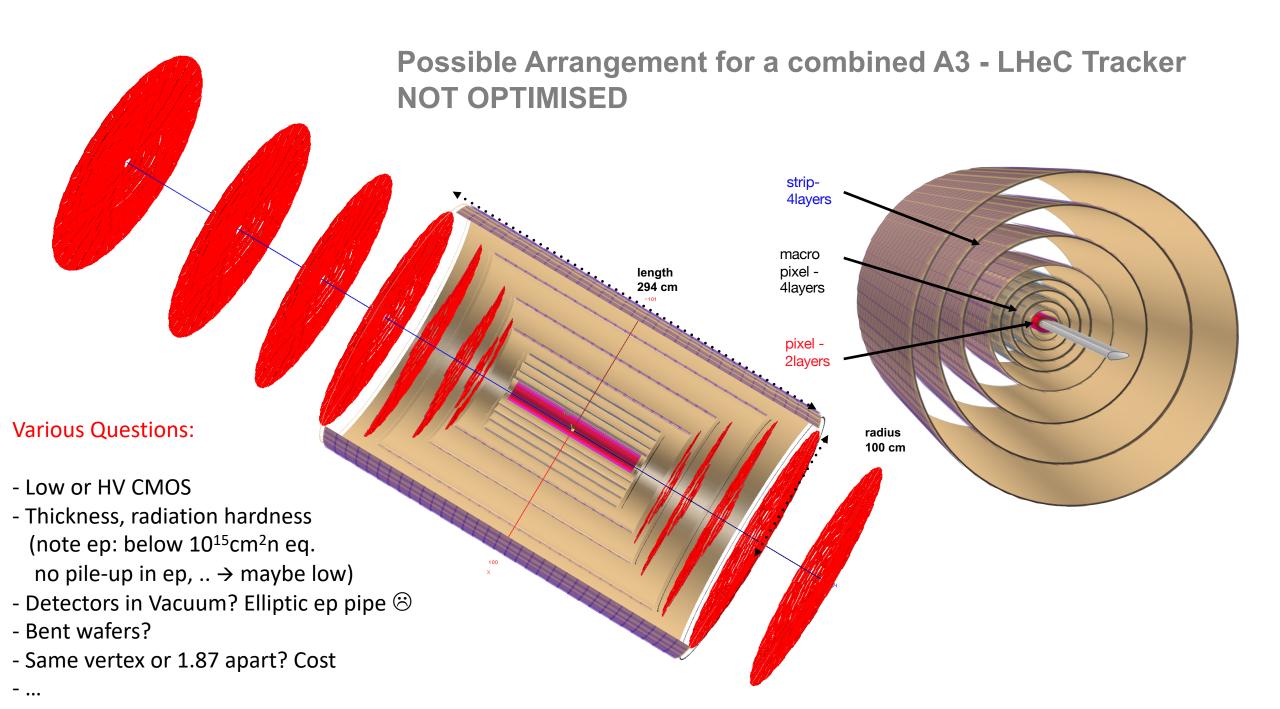
We should examine a new paradigm, where the physics underlying soft collective signals can be the same in all high energy reactions, from e⁺e⁻ to central AA

Joint eA/ep and pp/pA/AA physics in a common apparatus is probably an ideal for new heavy ion physics to very high precision.

A common/dual/joint - you name itexperiment would have unprecedented reach into physics


AA


from low p_T , to quarkonia + hard scales


eA

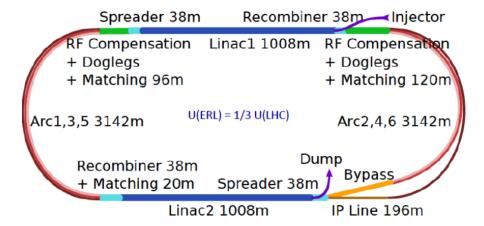
DIS extended by 3-4 orders of magnitude.

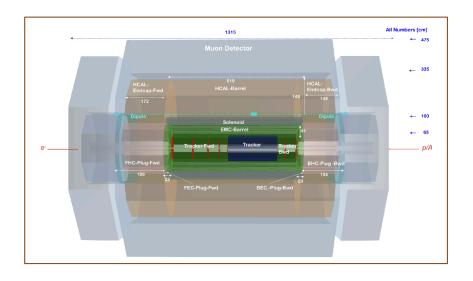
Invites new and further thinking, and to carefully evaluate gains and drawbacks of such an enterprise.

Questions and Tentative Comments on Merger

Initial thoughts and questions: LHeC Meeting 29.10.

and tentative answers 23.11.20


First derived questions:


- Can we generate luminosity at 0 and +1.8m for pp/AA and ep/eA, respectively? yes, time needed sharing
- How does LHeC detector change if we integrate A3 into LHeC extension in radius, B reduced, low V CMOS, ...
- How would A3 detector change? Would it profit from the ep detector environment?
 Muons, calorimetry? Better answered with A3 insight, one would expect this leads to a hard scale program
- How does the physics potential change? eA programme at TeV scales. LHeC is most powerful EIC one can build

Detailed Questions

- Magnetic fields: solenoid: if we go to half our value, and enlarge the radius by 2, we gain factor 2 resolution ok Dipole: the dipole (and solenoid) would move further out, any problem? Rather not. Note low material magnets
- Choice of Silicon technology for IT, are we compatible with them? Probably yes. low V CMOS probably ok for LHeC
- Readout and Trigger: speed, data volume, 2 trigger and r/o branches or 1 etc. To be studied
- For their design the extended ep beam pipe is a nuisance (as it is for ours) --> place Si inside pipe??? challenging
- There are many more..
- > It indeed seems feasible to combine the two detectors and IR concepts (further machine studies ongoing)

Concluding Remarks

This is indeed affordable - O(1) billion CHF for another TeV collider

It sustains the HL-LHC and exploits this massive O(5) BCHF investment

Physics: Unique: Microscope of substructure (not resolved!), empowers LHC searches and Higgs measurements challenging e⁺e⁻, Discovery in electroweak and strong i.a. sector, Revolution of HI physics

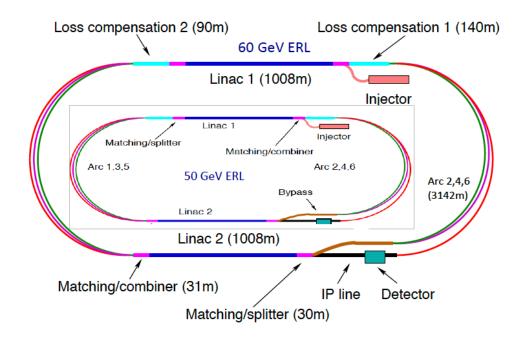
Technology: Accelerator: highest energy ERL application - green.

Detector: exciting place for new technology (CMOS, timing, thin calo.. etc) in classic DIS, low radiation environment, no pileup. Exciting place also for known technology to reappear and work.

Merging LHeC with A3 resolves conceptual conflict on IP2 and promises to lead to new chapter of HI and accelerator physics (tentative)

Next steps: PERLE facility at Orsay, considerations for a detector proposal to LHCC, embedded and subject to CERN's future, which is also related to that of the CEPC.

The LHeC group believes that diversity (at the energy frontier too) is key to help particle physics theory to restore its predictive power..


backup

The ERL in more Detail

Parameter	Unit	Value
1 at afficter	Ont	varue
Injector energy	${ m GeV}$	0.5
Total number of linacs		2
Number of acceleration passes		3
Maximum electron energy	${ m GeV}$	49.19
Bunch charge	\mathbf{pC}	499
Bunch spacing	ns	24.95
Electron current	mA	20
Transverse normalized emittance	$\mu \mathrm{m}$	30
Total energy gain per linac	${ m GeV}$	8.114
Frequency	MHz	801.58
Acceleration gradient	MV/m	19.73
Cavity iris diameter	$\mathbf{m}\mathbf{m}$	130
Number of cells per cavity		5
Cavity length (active/real estate)	\mathbf{m}	0.918/1.5
Cavities per cryomodule		4
Cryomodule length	\mathbf{m}	7
Length of 4-CM unit	\mathbf{m}	29.6
Acceleration per cryomodule (4-CM unit)	${ m MeV}$	289.8
Total number of cryomodules (4-CM units) per linac		112 (28)
Total linac length (with with spr/rec matching)	\mathbf{m}	828.8 (980.8)
Return arc radius (length)	\mathbf{m}	536.4 (1685.1)
Total ERL length	km	$5.\overline{3}32$

Table 10.1: Parameters of LHeC Energy Recovery Linac (ERL).

Positrons: 500pC is 3 10^9e^- /bunch \rightarrow 20mA and 1.2 10^{17} e⁻/s LHeC programme needs e⁻p predominantly (Higgs) and only smaller e⁺p sample, $^{-}fb^{-1} \rightarrow O(10^{15})$ e⁺/s, still demanding!

- LHeC Configuration reduced from 60 to 50 GeV.
- LINAC: 112 cryomodules with 4 cavities each
 - → Total number of cavities: 896 [ILC: O(10⁴)]
- Configuration may be staged with less RF
- Tunnel is small part of cost and better not reduced further, synchrotron loss, upgrades..
- ERL reduces power to << GW and dumps at < GeV
 → novel, "green" accelerator technology

Machine Parameters and Operation - ep

arXiv:2007.14401

Parameter	\mathbf{Unit}	$_{ m LHeC}$			FCC	C-eh	
		CDR	Run 5	Run 6	Dedicated	E_p =20 TeV	$E_p = 50 \mathrm{TeV}$
E_e	${ m GeV}$	60	30	50	50	60	60
N_p	10^{11}	1.7	2.2	2.2	2.2	1	1
ϵ_p	$ m \mu m$	3.7	2.5	2.5	2.5	2.2	2.2
$\dot{I_e}$	mA	6.4	15	20	50	20	20
N_e	10^{9}	1	2.3	3.1	7.8	3.1	3.1
eta^*	$^{ m cm}$	10	10	7	7	12	15
Luminosity	$10^{33}\mathrm{cm^{-2}s^{-1}}$	1	5	9	23	8	15

Table 2.3: Summary of luminosity parameter values for the LHeC and FCC-eh. Left: CDR from 2012; Middle: LHeC in three stages, an initial run, possibly during Run 5 of the LHC, the 50 GeV operation during Run 6, both concurrently with the LHC, and a final, dedicated, stand-alone *ep* phase; Right: FCC-eh with a 20 and a 50 TeV proton beam, in synchronous operation.

No pileup

For comparison, HERA I operated at 10^{31} cm⁻²s⁻¹, and was upgraded by a factor of up to 4 for HERA II The total luminosity delivered was 1 fb⁻¹ over a running period of 15 years, including shutdowns. LHeC may operate at 20 x 1000 GeV² and "repeat" all of HERA in a short running period.

The initial CDR considers a Ring-Ring ep collider as a back-up solution. May be revived for HE-LHC.

Machine Parameters - eA

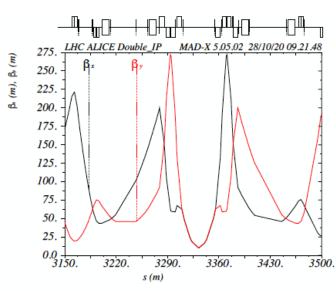
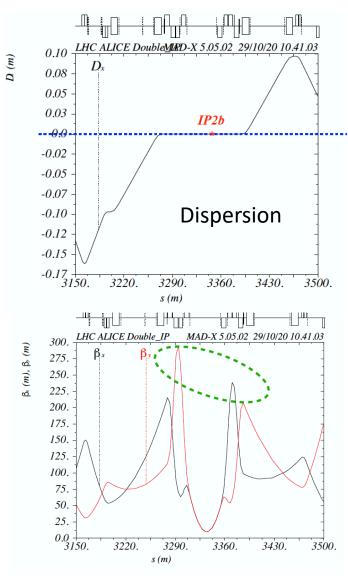
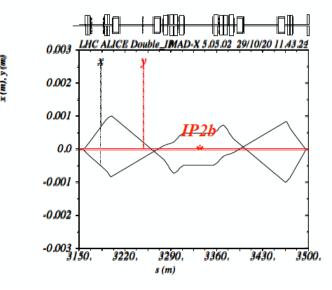

Parameter	$\mathbf{U}\mathbf{nit}$	LHeC	FCC-eh $(E_p=20\mathrm{TeV})$	FCC-eh $(E_p = 50 \mathrm{TeV})$
Ion energy E_{Pb}	${ m PeV}$	0.574	1.64	4.1
Ion energy/nucleon $E_{\rm Pb}/A$	${ m TeV}$	2.76	7.88	19.7
Electron beam energy E_e	${ m GeV}$	50	60	60
Electron-nucleon CMS $\sqrt{s_{eN}}$	${ m TeV}$	0.74	1.4	2.2
Bunch spacing	$^{ m ns}$	50	100	100
Number of bunches		1200	2072	2072
Ions per bunch	10^{8}	1.8	1.8	1.8
Normalised emittance ϵ_n	$ m \mu m$	1.5	1.5	1.5
Electrons per bunch	10^{9}	6.2	6.2	6.2
Electron current	mA	20	20	20
IP beta function β_A^*	$^{ m cm}$	10	10	15
e-N Luminosity	$10^{32} \text{cm}^{-2} \text{s}^{-1}$	7	14	35

Table 2.4: Baseline parameters of future electron-ion collider configurations based on the electron ERL, in concurrent eA and AA operation mode with the LHC and the two versions of a future hadron collider at CERN. Following established convention in this field, the luminosity quoted, at the start of a fill, is the electron-nucleon luminosity which is a factor A larger than the usual (i.e. electron-nucleus) luminosity.

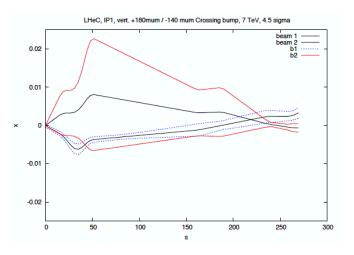
arXiv:2007.14401

The LHeC and FCC-eh are the highest energy, most powerful electron-ion colliders the world may build. Saturation, Parton Dynamics and Structure in Nuclei, Quarkonia, Jets, Tomography of p and Nuclei, ...




LHC Optics – beta vs path

ALICE Luminosity Optics $\beta^*=10$ m


Optics for IP2

ALICE Luminosity Optics: IP2b=1.87m

Separation bump (std LHC procedure)

Shift in time and vertical xing 140mrad

→ No showstopper for ep and AA

Aperture Staggered Quadrupoles

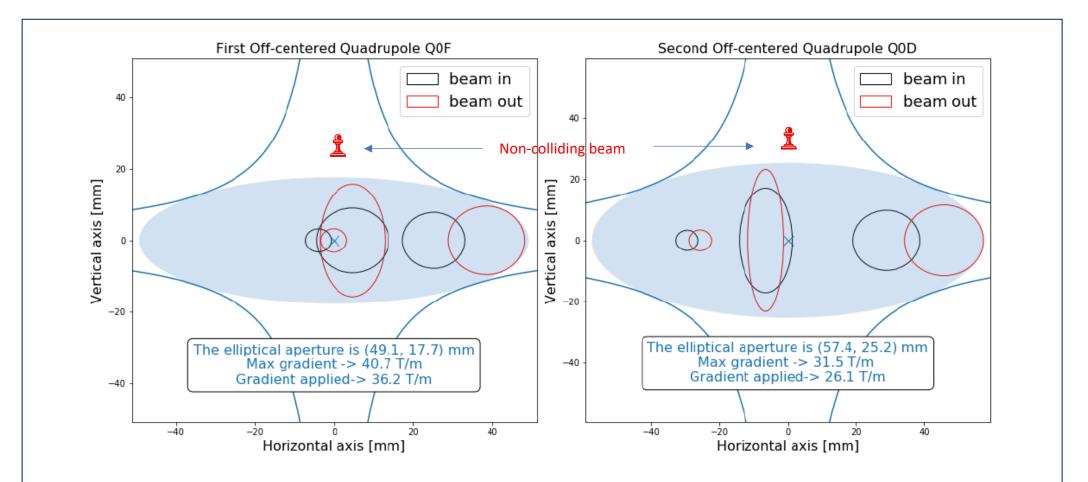


Figure 10.42: The position of the three beams at the entrance (black) and exit (red) of the electron doublet magnets. Following the internal convention, $15\,\sigma$ plus $20\,\%$ beta beating plus $2\,\text{mm}$ orbit tolerances beam envelopes are chosen for the proton beams. The beam size of the electrons refer to $20\,\sigma$. From left to right the three beams are respectively the non colliding proton beam (tiny circles), electron beam (squeezed ellipses) and the colliding proton beam.

Aperture Half-Quadrupole

Non-colliding beam

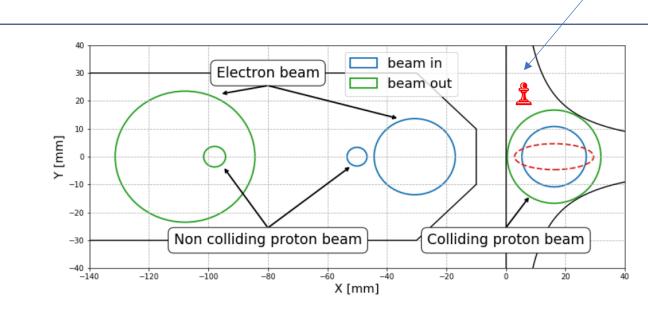
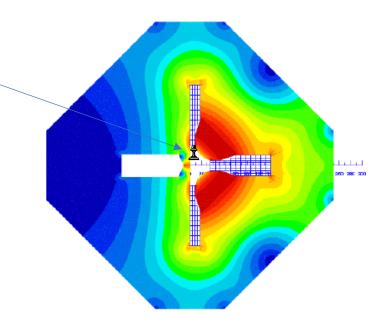
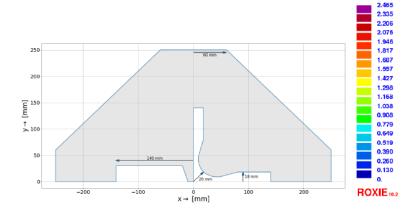
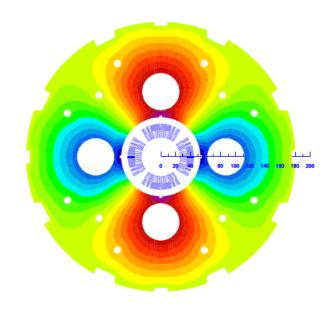




Figure 10.41: The position of the three beams at the entrance (blue) and exit (green) of the half quadrupole. The colliding proton beam is centered inside the main magnet aperture, while the second proton beam and the electrons are located in the field free region. The dashed red line represents the injection proton beam at the output of the half quadrupole.


Q1 and further Quadrupoles

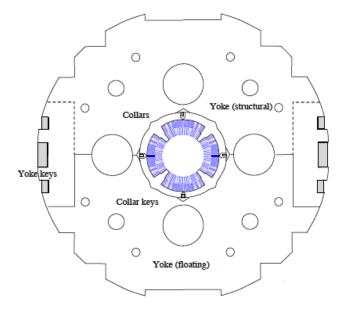

Magnet parameter	Unit	Magnet type			
		Q1A	Q1B	Q2 type	Q3 type
Superconductor type		Nb-Ti	Nb-Ti	Nb ₃ Sn	Nb ₃ Sn
Coil aperture radius R	mm	20	32	40	45
Nominal current I_{nom}	A	7080	6260	7890	9260
Nominal gradient g	T/m	252	164	186	175
Percentage on the load line	%	78	64	71	75
Beam separation distance S_{beam}	mm	106-143	148-180	233-272	414-452

Table 10.28: Main triplet magnet parameters

Q2, Q3 desirably NOT Nb₃Sn but Nb-Ti as suggested by current experience B Holzer, S Russenschuck

Aperture of Q1A needs study, when non-colliding p beam is kept in vacuum

Energy Recovery and Synergies

→ High ERL power facility P=I_e E_e

This is a programme for high quality SRF ($Q_0 > 10^{10}$), high current sources, and multiturn to reach high E_e

Future/current ERL developments: distribution of emphasis

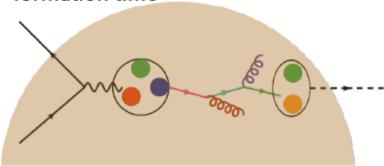
- CBETA: high current, single turn for e cooler (EIC)
- MESA: polarised beam for new PV asymmetry exp.
- CEBAF: few GeV energy for study of syn. radiation
- PERLE: high current, multiturn for exp's and future

Plans: Daresbury, Darmstadt, Berlin. Revival of KEK ERL normal conducting ERL machine at BINP

Coordination: Lab Director Group (A Stocchi IJClab for ERL) European Accelerator R+D Roadmap: CERN council 9/21 ERL Network. ERL workshop series

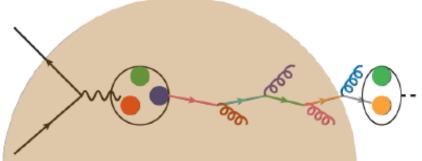
Technical Synergies of LHeC with other applications

- SAPPHIRE: a yy collider: Higgs, eweak and QCD machine F. Zimmermann et al, arXiv:1208.2827
- Racetrack as an injector into FCC-ee [direct into Z]
 O. Bruening, Y. Papaphilippou
- LHeC-FEL
 - F. Zimmermann et al, work in progress
- Injector into FCC-hh
 - R. Calaga
- Proposal of ERL Version of FCC-ee for high Lumi at high E_e
 V Litvinenko, T Roser, M Chamizo-Llatas arXiv: 1909.04437
- 802 MHz technology: PERLE, FCC-ee, eSPS
 F Marhauser, B Rimmer et al
- 704 MHz SPL Cryomodule (CERN) modified for PERLE
 F Gerigk, E Jensen et al.
- ALICE (Daresbury) Gun delivered to Orsay for PERLE
 D Angal-Kalinin, B Militsyn et al
- JLEIC Booster (Jlab) likely to be used in PERLE F Hannon, B Rimmer et al
- Forward Calorimetry: FCC-hh and ee colliders / CALICE...
- Inner Tracker/CMOS: ee colliders, new HI detector at IP2
- ...

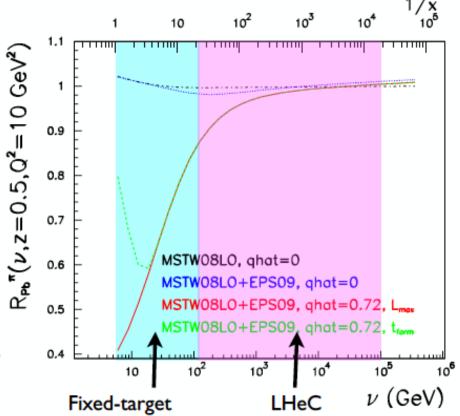

Partonic evolution and hadronization

Relevant for particle production and QGP analysis in HIC:

Low energy:


hadronization in matter

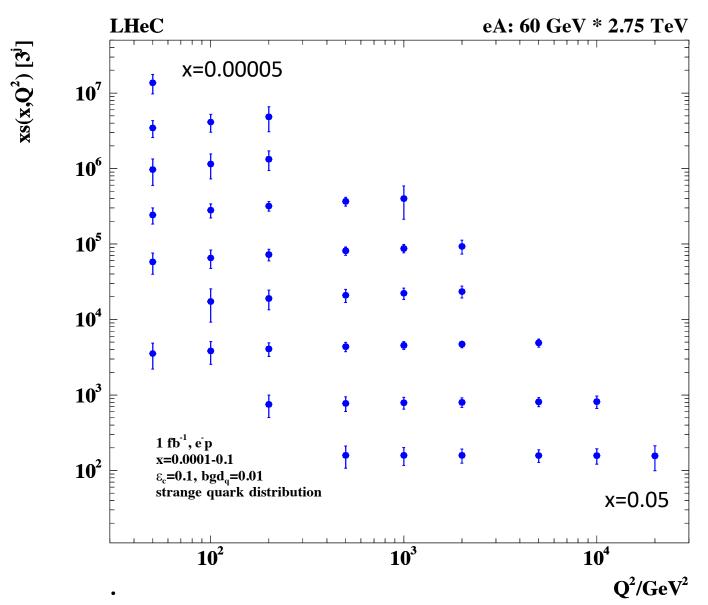
- (pre)hadronic absorption
- formation time


High energy:

 modification of partonic evolution

jets plentiful in eA benchmark for jet quenching studies in AA

Ratio of fragmentation functions Pb/p



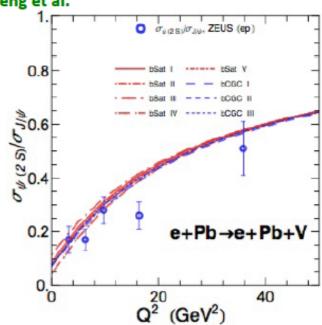
E. G. Ferreiro USC & LLR

How could HI physics at the energy frontier profit from LHeC

LAL Orsay 28/6/2018

Heavy Flavour – Strange in ePb - from CC

Other possible studies: quarkonium production


Production mechanism and polarization:

polarized J/ψ photoproduction can be studied more precisely and up to much larger values of p_⊤ in ep @ LHeC

⇒ test NRQCD factorization in charmonium physics

Butenschoen Kniehl

Charmonium WF in diffractive DIS within the dipole formalism Cheng et al.

Spatial and Momentum Tomography of Hadrons and Nuclei

Gluon TMDs could be directly probed by looking at p_T distributions and azimuthal asymmetries in e p \rightarrow e Q Q X Boer, Lansberg, Pisano

Gluon GPDs

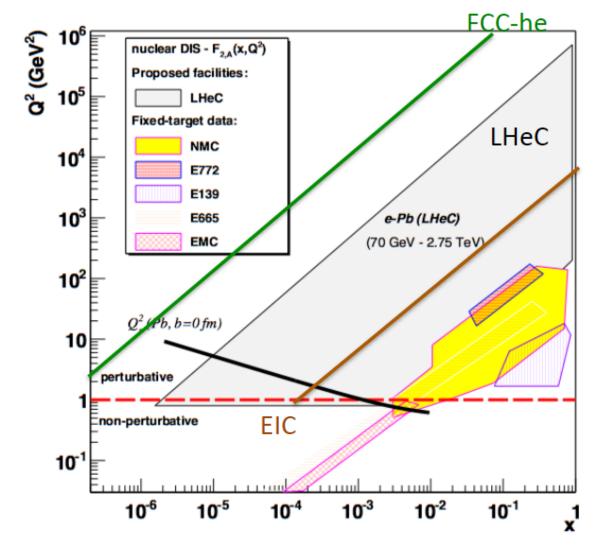
Y production at an EIC to determine the gluon density transverse spatial profiles in a wide range of x and consequently provide a path to determine the gluonic radius of the nucleon and the contribution of the total angular momentum of gluons to the nucleon spin

Joosten and Meziani

Kinematic Ranges of IA DIS – Past and Future

HERA missed the electron-ion phase.
No deuterons either.
cf HERA3 in 2001..

Note that LHeC may be tuned to low energies


√s ≈ 100 GeV instead of

1 TeV – direct overlap

EICs and HERA.

FCC-eh: highest Q^2 , 1/x

Expect saturation of rise at $Q_s^2 \approx xg \alpha_s \approx c x^{-\lambda}A^{1/3}$ Note that the gluon is valence like at low Q^2

Luminosity: crucial for efficient operation, to access rare channels and high x, and Q² 15 years of HERA luminosity collection may shrink to a few days (ATLAS now up to 1fb⁻¹/day)