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Ideas based on SLD vertex detector (307 M Pixels), extended
to 799 M pixels.

* Physics goals

» Detector design overview

» Layer thickness

» Readout rate; CCD architecture
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Physics Goals

 TeV regime may be characterised by a wide range of SM
and beyond-SM processes, typically with small cross-
sections, many with high multiplicities of heavy-quark jets, eg

e'e” - tt usually 6 jets, two b-flavoured and
two c-flavoured

e'e” - tth usually 8 jets, four b-flavoured
e'e” -~ AH 12 jets, four b-flavoured
* Precision measurements (eg of Higgs branching ratios) can
distinguish between SM and other models.

— Thus, need for highly efficient and pure b and c tags is
evident

« Vertex charge is valuable to distinguish b from b and c
from ¢

Important for angular anayses eg for
Z/ZH and ZyH anomalous couplings

 Charge dipole (demonstrated in SLD) can distinguish b from
b even in case of B° final state
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The SLD Vertex Detectors

VXD2 Proc 26" Int Conf on HEP, Dallas TX (1992)

VXD3 | NIM A400 (1997) 287
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e’e” linear collider will inevitably have high background at small
radii
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The future LC vertex detector

» Studies of the Linear Collider Flavour ID collaboration (LCFI)

» Detailed studies in context of TESLA detector:
* R,, =14 mm and 4 Tesla solenoid

— L1 active length 10 cm

- 3-hit coverage to cos8 =0.96

Cos 6=0.96

Striplines

1-CCD Ladders \
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Stripline

Foam Cryostat —~_—»

and Faraday Cage
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SLD & Future LC Detector

Properties
Detector VXD2 VXD3 Future LC
CCDs 480 96 120
CCD active area (cm?) | 1.2 12.8 27.5
Number of pixels (x10°) | 120 307 799
Effective no. of layers 2 3 5
Inner layer radius (mm) |28 28 15
Layer thickness (% X,) | 1.1 0.4 0.06
(cos@).... (2-hit) 0.75 0.90 0.96
Imp. param resoln.
o 11070/ psin?6 | 9033/ psin?0 |3.506.5/psin”6
o 38070/ psin?0 | 17033/ psin”?@ | 3.506.5/psin”6
Readout time 160 ms 216 ms 50/250 us
(8 ms for NLC)
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Layer Thickness

» Currently pushing the ‘unsupported silicon’ option

CCD
thickness~50um

Bump bonds
(hidden)

Readout IC
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Driver
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Driver IC
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power
tapes
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joint
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» Results with thin glass CCD models are most encouraging

» Assisted by the strong technology evolving for PTPs (paper-
thin packages)
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0.06% X,/layer would be excellent, but this imposes pressure
on the beampipe thickness

Lower
Beryllium
Upper support
Beryllium shell
support

shell

Beam-Pipe

Stripline

Foam Cryostat /

and Faraday Cage

* 0.07% X, may be possible (0.25 mm beryllium), by using the
VXD support shell for strain relief
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» Layer 1-3 provide first class coverage to cos8 =0.96
« <1% X, total
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Readout Rate/CCD Architecture

NLC: 190 x120 = 22.8 x10° bunches/s

TESLA: 2820x5 = 14.1x10° bunches/s
Luminosity and background per bunch are similar.

NLC: CCD readout in 8 ms between bunch trains provides
adequate background control

TESLA: 15 times more luminosity per train, so need to read
repeatedly during each train of 950 us

— Concept of column-parallel readout in 50 wus, which is
interesting for other CCD application areas.

[An earlier option of fast clear, fast trigger and kicker magnet to

kil the bgd was excluded by GMSB and other subtle
signatures: the LC DAQ must run in an untriggered mode.]
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Readout IC
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Maybe no-reset output with resistive load

» Single row of staggered bump bonds follows standard
industrial practice

» Goalis 50 MHz parallel clocking with 1-3 V drive voltages

— what implications for on-CCD buslines, in-detector
cooling?

» Signal processing well-matched to 0.25 um processing.
Much can be learned from CMOS active pixel imaging
devices
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Initial studies based on 3-phase clocking

Pl

13 mm

SPICE model of column-parallel CCD gate structure
(VXD layer 1 dimensions)

ccdsim1 ccdsim2
1 1
!
0.8 0.8 s
3 06 206 :
s ) {
$ 04 2 04 ‘
0.2 0.2 !
| 3
0 T T T T T T T 0 e = =r - T = — u —
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100
time (ns) time (ns)
——— V2 drive V2centre ------ V1 centre ------ V3 centre V1 drive V3 drive ————V2 drive V2 centre ------ V1 centre ------ V3 centre V1 drive V3 drive

CJSD/LCWS2000/October 2000/pg13




However, the LC lends itself to 2-phase sinusoidal operation,
starting slightly before the bunch train
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Latest estimates:
In detector power dissipation = 9 Watts!
- a very gentle flow of cooling gas

[Ladder ends will need more aggressive cooling: ‘no problem’.]
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Readout IC
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« Background occupancy 5.9 hits/mm? (layer 1) to
0.6 hitsyfmm? (layer 5)

— ~ 2.6x10° hits/train

- 15 MB stored on detector during train and read out to a
selected available processor between trains

- a few optical fibres each end
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Conclusions

* We have about 5 years of R&D before technology choices
need to be made

» CCDs, while promising, could run up against show stoppers
such as:

present goals achieved too late or not at all
manufacturers losing interest
radiation environment (specially neutrons)

* For all options, CCDs, hybrid pixels and CMOS pixels,
important to push hard. Much scope for development;
physics prizes could be immense

» All these technologies are in demand for many applications.
Developments are likely to make brisk progress into the

distant future, independent of HEP community

» The preferred technology may well change during the life of
the collider

* Therefore vital to ensure convenient access to the inner
detector, in order to permit instrumentation upgrades (vertex
detector, beamsize monitor, beam position monitors) every
few years.
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