CCD-based vertex detector for the linear collider

Status report from the Linear Collider Flavour ID Collaboration (LCFI)

> Chris Damerell 29 March 2000

- Overview
- Low-mass detector
- Fast readout
- Radiation resistance
- Performance criteria
- Technology choice for LC vertex detectors

LCFI Group List (updated 16/4/00)

Phil Allport **Richard Apsimon** Adam Baird **Roger Barlow** Marco Battaglia Giulia Bellodi Steve Biagi Grahame Blair Paul Booth Themis Bowcock Chris Bowdery Jane Bruffell **Steve Burge** Phil Burrows Peter Bussey Leo Carroll Alex Chilingarov **Glenn Christian** Paula Collins **Geoff Court** John Dainton Chris Damerell Nicolo de Groot Tim Durkin **Bob English** Alex Finch **Brian Foster** Erwin Gabathuler **Tony Gillman Debbie Greenfield** Tim Greenshaw

Rob Halsall **Richard Hawkings Bill Haynes David Jackson** John Jaros Erik Johnson Tim Jones Laurie Lintern Louis Lyons **Stephen Maxfield** Adrian McKemey **Dave Milstead** Gerald Myatt Gavin Nesom Andy Nichols David Sankey Ken Smith **Tony Smith** Ed Spill **Richard Stephenson** Geoff Tappern Julia Thom Renato Turchetta Roman Walczak Jason Ward Steve Watts Joolz Williams Alison Wright Stefania Xella

- Design concept stable since Snowmass '96
 - concentric cylinders
 - maximum polar angle coverage
 - 5 layers
 - standalone tracking
- Recent studies in context of TESLA interaction region
 - 4 Tesla solenoid
 - $R_{bp} = 14 \text{ mm}$
 - L1 active length = 100 mm
 - 3-hit coverage including L1 to

```
\cos\theta = 0.955
```


- Layer thickness
 - official goal 0.12% X₀
 - may reduce to $\leq 0.06\%$ X₀
 - ideas for a similarly thin inner beam-pipe
- Fast readout
 - conventional clocking at 50 MHz will suffice for NLC
 - TESLA bunch structure is more challenging
 → column-parallel CCD
 - this development resonates with requirements in several other areas of science
- Radiation resistance
 - Tooling up for R&D
- Technology choice
 - Physics goals:
 - high efficiency/purity for charm jet ID
 - measurement of vertex charge (for separating *b* from *b* and *c* from *c*)
 - measurement of charge dipole (for separating *b* from \overline{b} in jets with neutral *B*s)

- use of p_{τ} imbalance to correct vertex mass for missing neutrals including neutrinos
- The most optimistic current thinking will fall short of these goals, so we need to push for best possible performance in all critical parameters:
 - **R**_{bp}
 - layer thickness
 - (point measurement precision)
- Technology choice will be determined by who manages to meet their design goals, including:
 - thermal management (10s or 100s of watts)
 - full material budget (supports, cables etc)
 - overall mechanical stability
 - *sufficient* robustness wrt charged particle and neutron backgrounds
- Very open between:
 - CCDs
 - monolithic APS
 - hybrid APS

Only clear decision is for a silicon pixel-based system as pioneered at SLD

Low-mass detector

• Our official goal is 0.12% X₀ per layer

(30 μ m silicon bonded to 250 μ m beryllium substrate in form of omega or vee beam)

- Unsupported-silicon option (under tension) could reduce this by a factor two, to 0.06% X_0 , assuming 60 μ m die thickness
- Assisted by the strong technology evolving for paper-thin packages (PTP)
- R&D programme consists of
 - tests with unprocessed silicon
 - tests with thinned CCDs
- Supports will consist of annulus block/ladder block assemblies as used in SLD, with an additional tensioning spring
- If successful, this approach will put pressure to reduce beam-pipe thickness to 0.25 mm (0.07% X₀) or lower. This may be feasible if VXD support shell is used for strain relief, particularly important during installation/removal of inner detector assembly

Virginia Semiconductor

Unsupported silicon ladder

Details of tensioning system

Suggested layout of Vertex Detector for future e⁺ e⁻ Linear Collider (Updated October 1999)

Fast Readout

- Column-parallel readout with a single row of staggered bump bonds on 60 μ m pitch follows standard industrial practices (unlike large area bump bonding)
- Minimising electronics suggests a no-reset output with resistive load
- Feasible clocking rate depends on many parameters:
 - clock voltages (1-3 V)
 - I gate capacitance (function of CCD operating conditions)
 - cooling power at ends of ladders beyond vertexing aperture
 - developments in driver IC design
- Signal processing looks like a project well matched to 0.25 μ m CMOS technology. Power dissipation?

CJSD/CCD-based VD for the LC/29 March 2000/pg18

Photobit

ON-CHIP ADC ARCHITECTURES

ON-CHIP

Layout of ladder end

Performance criteria

- Current state-of-art tagging from Richard Hawkings; development of Dave Jackson's ZVTOP
- Ghost-track extensions in SLD suggest room for further development, eg in 1-prong decays
- SLD charge-dipole analysis is beautiful, but much room for improvement
- Energy-flow in calorimeter offers hope of including π^0 s associated with the heavy flavour decays
- Clear classification of jets as with-lepton or without-lepton can be a powerful tool in sharpening dijet mass resolution
- Residual p_{τ} imbalance in with-lepton vertices can be used to compensate partly for missing neutrinos
- All these tools need tuning with different detector options and assessment using physics examples, in order to make a true evaluation of the importance of any suggested detector enhancements or compromises
 - Meanwhile, experience suggests that one will continue to win rapidly in line with improvements in impact parameter resolution, and redundancy in close-in tracking (eg for optimally handling photon conversions)

CHARGE DIPOLE TAG

EXPLOIT THE BOD CASCADE CHARGE STRUCTURE

CHARGE DIPOLE; SEPARATE RECONSTRUCTED B DECAY TRACKS INTO CANDIDATE B AND D VERTICES

$$S_2 = \frac{Q_0 - Q_B}{|Q_0 - Q_B|} \cdot DIST (B \to D VTX)$$

bg > 0 TAGS B, DECAY < 0 B,

October 1999

ecfa/desy - Obernai - J.C.Brient

Conclusions

- We probably have 5 years of R&D before technology choices need to be made
- For all options, important to push hard since there is much scope for development and the physics prizes could be immense
- As usual, the technological developments for vertex detectors are likely to continue to make brisk progress into the distant future (improved pixel detectors are in demand for numerous imaging applications)
- Therefore, vital to ensure convenient access to the inner detector, in order to permit ongoing vertex detector upgrades every few years.
- The preferred technology may well change during the life of the collider.

