

Christos Touramanis

THE UNIVERSITY of LIVERPOOL

for the BABAR Collaboration

HEP2001 meeting, European Physical Society, Budapest, July 13 2001

The BABAR collaboration

9 Countries72 Institutions554 Physicists

*2

China [1/6] Inst. of High Energy Physics, Beijing

France

[5/50]

LAPP, Annecy LAL Orsay LPNHE des Universités Paris 6/7 Ecole Polytechnique CEA, DAPNIA, CE-Saclay

Germany [3/21]

U Rostock Ruhr U Bochum Technische U Dresden

Norway [1/3] U of Bergen

Russia [1/13] Budker Institute, Novosibirsk

BABAR

Italy [12/89]

INFN, Bari INFN, Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova INFN, Milano INFN, Napoli INFN, Padova INFN, Pavia INFN, Pavia INFNN, Roma and U "La Sapienza" INFN, Torino INFN, Trieste

United Kingdom [10/80]

U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool Imperial College Queen Mary & Westfield College Royal Holloway, University of London U of Manchester Rutherford Appleton Laboratory **Canada** [4/16] U of British Columbia McGill U U de Montréal U of Victoria

USA [35/276]

California Institute of Technology UC. Irvine UC, Los Angeles UC, San Diego UC. Santa Barbara UC. Santa Cruz U of Cincinnati U of Colorado Colorado State Florida A&M U of Iowa Iowa State U LBNL LLNL U of Louisville U of Maryland U of Massachusetts, Amherst MIT U of Mississippi

Mount Holyoke College Northern Kentucky U U of Notre Dame ORNL/Y-12 U of Oregon U of Pennsvlvania Prairie View A&M Princeton SLAC U of South Carolina Stanford U U of Tennessee U of Texas at Dallas Vanderbilt U of Wisconsin Yale

Overview

- Physics issues
- PEP-II and BABAR
- Dilepton B sample
 - mixing, CP/T violation
- Exclusive B sample
 - lifetimes, mixing
- Observation of CP violation, sin(2β)
- Conclusion

CP violation in the Standard Model

Unitarity triangle

$$\begin{array}{c}
 B^{0} \rightarrow pp, rp \\
 V_{ud} V_{ub}^{*} \\
 V_{cd} V_{cb}^{*} \\
 (0,0) \\
 B^{\pm} \rightarrow DK^{\pm} \\
 B_{\cdot} \rightarrow D^{*}p
\end{array}$$

$$\begin{array}{c}
 B^{0} \rightarrow pp, rp \\
 V_{cd} V_{tb}^{*} \\
 V_{cd} V_{cb}^{*} \\
 I \\
 B_{\cdot} \rightarrow D^{*}p
\end{array}$$

$$\left[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \right]$$

A time dependent decay rate asymmetry between CP conjugate processes is a direct manifestation of CP violation

Asymmetry for B⁰ -> $J/\psi K_{S}(K_{L})$: $a_{f}(t) = (\pm 1) \sin (2\hat{a}) \sin (\ddot{A}mt)$

Main focus of the BABAR physics programme

• B physics, CP violation: angles **b** , **a** and **g**

- Determination of unitarity triangle sides:
 - V_{ub} and V_{cb} : semileptonic B decays
 - V_{td} : B mixing (Δ m)
- Stringent tests of the SM :
 - Overconstrain the unitarity triangle
 - check for consistency between related observables

A word on CP violation

interfering amplitudes -> CP violating observables

Types of CP violation :

- Indirect
 - mixing amplitudes interference
 - A_T in this talk
- Direct
 - decay amplitudes interference
 - Sven Menke's talk
- CP violation in interference between mixing and decay
 - $sin(2\beta)$ in this talk

9GeV e⁻ on 3.1GeV e⁺ : $e^+e^- \rightarrow Y(4S) \rightarrow B^0 B^0$

- coherent neutral B pair production and decay (p-wave)
- boost of Y(4S) in lab frame : $\beta\gamma$ =0.56

BABAR

SLAC B factory performance

2001/07/10 03.40

- PEP-II top lumi:
 3.3x10³³cm⁻²s⁻¹ (design 3.0x10³³)
- Top recorded 24h L: 214/pb (design 135)
- BABAR logging efficiency:
 >96%

October 99 to 10 July 01 :

PEP-II delivered : 39.1/fb BABAR recorded : 36.8/fb (4.0/fb off peak)

- SVT: 97% efficiency, 15μm z resol. (inner layers, perpendicular tracks)
- Tracking : $\sigma(p_T)/p_T = 0.15\% x p_T \oplus 0.45\%$
- DIRC : K- π separation >3.4 σ for P<3GeV/c

Dilepton sample $b_g \sim 0.56$ B_1 B_2 T(4S) B_2 B_2 B_2 B_2 C_2 $C_$

- •B Flavor: sign of direct lepton
- •Event selection: PID (leptons), kinematics (NN)
- Δz : Closest approach of each lepton to beam spot in transverse plane

Mixing (
$$\Delta m$$
): $A(\Delta t) = \frac{N(\ell^+\ell^-)(\Delta t) - N(\ell^\pm\ell^\pm)(\Delta t)}{N(\ell^+\ell^-)(\Delta t) + N(\ell^\pm\ell^\pm)(\Delta t)}$

CP/T violation (
$$\boldsymbol{\varepsilon}_{\mathrm{B}}$$
): $A_{\mathrm{T}}(\Delta t) = \frac{N(\ell^+ \ell^+) - N(\ell^- \ell^-)}{N(\ell^+ \ell^+) + N(\ell^- \ell^-)} \approx \frac{4\mathrm{Re}(\boldsymbol{e})}{1 + |\boldsymbol{e}|^2}$

Dilepton results, 20.7fb⁻¹

 $\frac{\text{Re}(\epsilon)}{(1+|\epsilon|^2)} = (0.12 \pm 0.29 \pm 0.36) \%$ Preliminary; most precise measurement (no CPT assumption)

Exclusive B reconstruction

Exclusive B sample use

- B₁ exclusive reconstructed :
 - Known CP: B_{CP}
 - Known flavor: B_{FLAV}
- AND :
 - Δz : B lifetime
 - Δz , B_2 flavor :
 - mixing if $B_1 = B_{FLAV}$
 - CP if $B_1 = B_{CP}$

Exclusive hadronic B sample

From these samples we measure:

- B⁰, B⁺ lifetimes
- Δm (mixing) of neutral B
- Δz resolution and tagging performance for the sin(2 β) measurement

Preliminary: $Dm_d = 0.519 \pm 0.020(stat) \pm 0.016 (syst) \hbar ps^{-1}$

CP violation, $sin(2\beta)$

BABAR.

CP violation, experimental issues

What we need

- B⁰ -> CP eigenstates sample (*backgrounds*)
- Flavor tag of the other B (*Dilution*)
- $\Delta t = \Delta z / \langle \beta \gamma \rangle$ (decay vertices, resolution)

 $sin(2\beta)$ extraction strategy

Unbinned max likelihood fit

- ✓ event by event Δt error
- ✓ Dilution dependent on tag type
- ✓ Simultaneous fit with B_{FLAV} sample

The current $sin(2\beta)$ analysis

A word on JpsiK*

Jpsi K^{*0}(K_s π^{0}) angular components:

- A_{||}: CP = +1
 A₀: CP = +1

•
$$A_{\perp}$$
 : CP = -1 (define $R_{\perp} = |A_{\perp}|^2$)

-> CP asymmetry diluted by $D_1 = (1 - 2R_1)$

 $-> R_{\perp} = (16.0 \pm 3.2 \pm 1.4) \%$ (BABAR, submitted to PRL)

 $=> \eta_{f} = 0.65 \pm 0.07$ (additional cuts)

Christos Touramanis, EPS, HEP2001

Flavor tagging of the other B

- Tagging categories (ranked) :
- 1.Lepton : Primary electron OR muon charge
- 2.Kaon (total) charge
- 3.NT1 Neural Net (slow pion charge, leptons)
- 4.NT2 same Neural Net, lower separation region

Flavor tagging performance

B_{FLAV} sample, neutral B self-tagging final states: 7591 fully reconstructed, vertexed and tagged on other side => Tagging performance measurement

Tagging performance ທີ່1200 $Q = \varepsilon D^2$, D = 1-2w<u>000</u>1 $\mathbf{D} = \mathbf{Dilution}$ 800 600 w : wrong tag fraction 400 ε : fraction of tagged events 200

From final CP fit:

Tagging category	ε (%)	w(%)	Q (%)
Lepton	10.9 ± 0.3	8.9 ± 1.3	7.4 ± 0.5
Kaon	35.8 ± 0.5	17.6 ± 1.0	15.0 ± 0.9
NT1	7.8 ± 0.3	22.0 ± 2.1	2.5 ± 0.4
NT2	13.8 ± 0.3	35.1 ± 1.9	1.2 ± 0.3
ALL	68.4 ± 0.7		26.1 ± 1.2

Δt measurement

- $\Delta t \text{ from } \Delta z = z_{CP} z_{TAG}$
- Δz resolution:
 - CP side: ~60µm
 - $-\Delta z: \sim 180 \mu m$
 - Small charm bias (~20µm), correlated to the per event error
- 2001 data: improved alignment => resolution

Fit results

Christos Touramanis, EPS, HEP2001

Mistag and resolution in CP, Flavor samples

The fit for $sin(2\beta)$

Combined likelihood for CP and FLAV samples

effect	Free params		
sin(2β)	1		
Mistags (avg, delta B ^o - antiB ^o)	8		
Signal Δt resolution (run1, run2)	16		
Background time dependence	9		
Background Δt resolution	3		
Background mistags	8		
TOTAL	45		

- Mistag, resolution determination dominated by large B_{FLAV} sample
- Background parameters from m_{ES} sidebands
- Largest sin(2β) correlation: 13% (any combination)
- $B^0 \Delta m$: fixed to 0.472 ps⁻¹
- B^o lifetime: fixed to 1.548 ps

CP violation and $sin(2\beta)$ in plots

Christos Touramanis, EPS, HEP2001

Sample consistency

Systematics etc

Main contributions to systematic error:

Source	error
Δt resolution function	0.03
Possible mistag difference (CP-FLAV samples)	0.03
Possible bgr CP asymmetry	0.02

- Prob. to get lower likelihood: 27% (MC)
- Blind analysis, Fit validations
- Different vertexing algorithms, PID, tagging methods tried
- => Our fit is well behaved and the result is stable

Direct CP violation

General expression for time dependent asymmetry:

$$A_{cp}(t) = \frac{-(1-|\lambda|^2)\cos\Delta m t + 2\operatorname{Im}\lambda\sin\Delta m t}{1+|\lambda|^2} \left[A_{cp}(t) = \operatorname{Im}\lambda\cdot\sin\Delta m t \right]$$

When $|\lambda| = 1$

in S.M. (no direct CP violation) : $|\lambda| = 1 :: Im(\lambda) \rightarrow sin(2\beta)$

Fit to the CP=-1 sample:

 $|\lambda| = 0.93 \pm 0.09$ (stat.) ± 0.03 (sys.)

•No evidence for direct CP violation •No shift in the "sin(2 β)" value

Conclusions and Outlook

- $\checkmark \sin(2\beta) = 0.59 \pm 0.14_{stat} \pm 0.05_{syst}$
- ✓ CP violation in B system observed at 4.1σ
 - ✓ First CP violation observation outside K⁰ system
- ✓ Direct sin(2β) measurement in agreement with range implied by knowledge of CKM matrix elements

Plans:

- $sin(2\beta)$ measurements with non-charmonium modes
- 100fb⁻¹ by next summer
- 500fb⁻¹ by 2005

Extra slide on the comparison of this result to our previous $sin(2\beta)$ publication in early 2001

Run1 – Run2 comparison

mode	$\sin 2\beta$ run1	N_{ev} run1	$\sin 2\beta run 2$	N_{ev} run2	R_{ev}	Δ_{12}	R_{exp}
$J/\psi K_{S}^{0} (\pi^{+}\pi^{-})$	0.23 ± 0.24	4 305	0.72 ± 0.27	169	1.37	0.49 ± 0.36	1.19
$J/\psi K^0_{S} \; (\pi^0 \pi^0)$	0.13 ± 0.65	5 82	1.62 ± 0.74	42	1.26	$1.49 {\pm} 0.98$	1.23
$\psi(2S)K_{S}^{0}(\pi^{+}\pi^{-})$	0.31 ± 0.49) 64	1.16 ± 1.21	28	1.08	0.85 ± 1.31	0.61
$\chi_{c1} K^0_S (\pi^+ \pi^-)$		29	1.14 ± 1.25	17	1.44		
$J/\psi K^{*0} (K^0_s \pi^0)$	1.26 ± 1.22	2 60	0.15 ± 1.62	23	0.94	-1.11 ± 2.0	1.20
$J\!/\psiK^0_{\scriptscriptstyle L}$	0.71 ± 0.4	2 288	0.68 ± 0.58	142	1.21	-0.03 ± 0.72	1.03
$J/\psi K_s^0 + \psi(2S)K_s^0$	0.32 ± 0.13	3 739	0.83 ± 0.23	381	1.27	$0.51 {\pm} 0.29$	1.09
$+ J/\psi K_L^0$							
all	0.45 0.18	8 816	0.82 ± 0.22	433	1.31	0.37 ± 0.29	1.12

Table 35: comparison between run1 and run2 results. Number of events are also compared. $R_{ev} = \frac{N_2 \mathcal{L}_1}{N_1 \mathcal{L}_2}$ is the ratio of the number of events per fb^{-1}, Δ_{12} is the difference between the two runs while $R_{exp} = \frac{\sigma_1}{\sigma_2} \sqrt{\frac{N_1}{N_2}}$

-> Change in central value ~1.8 σ (uncorrelated)

Old data, new analysis, same channels used in the past

