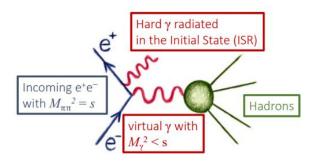
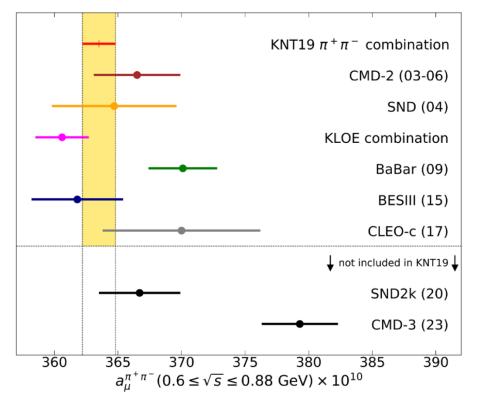

The Current Effort


The Leverhulme Trust grant which was awarded to Graziano Venanzoni in 2022 has funded a large group in Liverpool (12 postdocs and 8 PhD students) with the aim of clarifying the muon g-2 puzzle.

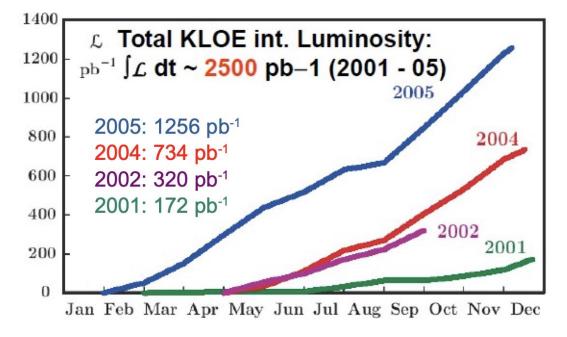
The current effort

There is a current experimental effort to **discern tensions in the dispersive approach** to determining the muon g-2 SM prediction


The main contribution to the evaluation of the hadronic contribution to the muon anomaly (a_{μ}^{HLO}) is taken from the $e^+e^- \rightarrow hadron$ cross section

A long-standing tension ($\simeq 2.8\sigma$) exists between KLOE cross section measurements and BaBar

The new CMD-3 $e^+e^- \to \pi^+\pi^-$ cross section measurement is in tension with both BaBar ($\simeq 2.3\sigma$) and KLOE ($\simeq 5.1\sigma$)


Combined theoretical prediction for the dispersive approach is limited by tensions between KLOE and BaBar measurements. Even without including CMD-3

Current KLOE hadronic cross section analysis

Previous KLOE analyses were done on 240 pb⁻¹ (~ 3.5 million TITTY events) of data taken in 2002 and

232 pb⁻¹ from 2006

This ongoing analysis aims to use **2004/2005 KLOE data** to carry out a new measurement. The ~1.7 fb⁻¹ includes ~ **25 million** *IIIIy* **events** which have **never been used** before in such an analysis. 2006 off-peak data will be used for additional cross checks and systematic studies

Current KLOE hadronic cross section analysis

KLOE12 KLOE-next (expected)

	S			
Syst Errors (%)	$a_{\mu}^{\pi\pi}$ ratio	$a_{\mu}^{\pi\pi}$ ratio		
Background Filter (FILF0)	negligible	negligible		
Background Subtraction	0.6	0.2		
Trackmass	0.2	0.2		
Particle ID	negligible	negligible		
Tracking	0.1	0.1		
Trigger	0.1	0.1		
Unfolding	negligible	negligible		
Acceptance $(\theta_{\pi\pi})$	negligible	negligible		
Acceptance (θ_{π})	negligible	negligible		
Software Trigger (L3)	0.1	0.1		
Luminosity	-	-		
\sqrt{s} dep. of H	-	-		
Total exp. systematics	0.7	0.3		
Vacuum Polarisation	-	-		
FSR treatment	0.2	0.2		
Rad. function H		-		
Total theory systematics	0.2	0.2		
Total systematic error	0.7	0.4		

Analysis group is tackling different aspects using new techniques with the intention of reducing the larger systematic uncertainties.

KLOE12:
$$0.3\%_{stat} \oplus 0.2\%_{th} \oplus 0.7\%_{syst} \Rightarrow \sim 0.8\%_{tot}$$

KLOE-next_(goal):
$$0.1\%_{stat} \oplus 0.2\%_{th} \oplus 0.3\%_{syst} \Rightarrow \sim 0.4\%_{tot}$$

There will be a factor 7 statistical improvement making the statistical uncertainty negligible wrt systematics.

There will be dedicated work on the background.

subtraction procedure to achieve a x3 reduction of the background subtraction uncertainty.

		Schedule in November 2024		ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
<u>ر</u> ج			11/24	12/24	01/25	02/25	03/2	
300	Binning							
人族	Blinding	Define procedure						
3 (A	Billiaing	Produce samples blinding root-tuples						
A STATE OF	FILFO + L3	Disable FILFO filter but keep info						
	Data Quality							
The Sales	Linux	Linux development						
	GEANT	GEANT3 studies + GEANT4 dev						
	Colinear	Measurement of Assymmetry and Form Factor						
	Radiative	Measurement of Assymmetry						
		BDT - instead of Mtrk cut + other bkg						
		add other variables to the bkg fitting						
Ž,	Bkg substraction	use sigma_mtrk cut to clean the sample						
G_{i}		Kinematic fit ? - Peter Lukin OR other methods						
		Different Mtrk cuts or none (e.g. fit instead)						
2.,		different radiative correction generators						
	PID algorithm	Develop PID algorithms						
	Data MC tuning	pos - neg tracks (s-t relations)					I <i>I.</i>	
		Data MC comparisons					•	
	Tracking	Reproduce old result						
	Tracking	Develop selection cuts + PID						
	Trigger						, ,	
23	Unshifting						li	
ďij.	Unfolding							
20 m	Documentation	Baseline performance					/	
		10% unblinding approval						
100 m		Publication						

A substantial number of resources and person-power have been stalled over the past two years due to the tape library computing issues

- It is important for the scientific impact of this result that we keep to the timeline.
- It is crucial that this analysis be finished before the end of the Leverhulme grant in 18 months to maintain the expertise needed throughout.

We need access to all the data as a matter of urgency and the lab's support to solve ongoing tape library issues and maintain smooth running of computing operations.