Searches for heavy resonances at the LHC, University of Liverpool

Aidan Randle-Conde

Université Libre de Bruxelles (ULB)

Overview

ULB

Introduction to the LHC, ATLAS and CMS Resonance searches: Introduction and scope Run 1 "fast" results Run 1 complex final states From Run 1 to Run 2 Run 2 "fast" results $Z' \rightarrow ee$ search at CMS Summary Run: 204153

Run: 204153 Event: 35369265 2012-05-30 20:31:28 CEST

A personal history

- I studied at Oxford for undergraduate. - CDF: B_{s} mixing studies.
- Then Brunel for postgraduate.
 - BaBar: $D_s \rightarrow l\nu$ decays, a "hot topic" back in 2008.
 - Then to SMU Dallas for my first postdoc.
 - ATLAS: Started the $H \rightarrow Z\gamma$ search.
- Currently at the ULB (Brussels). - CMS: $Z' \rightarrow ee$ search in Run 2.
 - Also take part in a lot of outreach (blogs, vlogs, comedy, writing apps, interactive public talks)
- It's a ULB thing: - sed "/s/scalar/Higgs/"

The LHC

- The LHC is a 27 km long ring located at CERN on the French-Swiss border
- Capable of accelerating and colliding protons:
 - Run 1:
 - $\sqrt{s} = 7$ TeV at 50 ns
 - $\sqrt{s} = 8$ TeV at 50 ns
 - Run 2: $\sqrt{s} = 13$ TeV at 50, 25 ns
 - Also lead ions in Pb-Pb and Pb-p collisions
- Typical luminosities of 1×10³⁴ cm⁻² s⁻¹

The ATLAS detector

The CMS detector

ULB

Resonances: scope

- A huge number of analyses fit into the topic "resonances"
- I can only cover a fraction of these!
- Mostly di-something searches

Run 1 "fast" results

ULB

Dilepton resonances

- Both ATLAS and CMS have searched for dilepton resonances:
 - Simple final states, low backgrounds.
 - Look for peak above smoothly falling background.

- Many Z' models available
 - Sequential SM, extra dimensions, extended electroweak sectors

Dilepton resonances

Main selections:		PRD 90, 052005	JHEP04(2015)025
	ATLAS	CI	VIS
ee	$E_{\rm T}$ > 40, 30 GeV	$E_{\rm T} > 35$, 35 GeV
	$ \eta < 1.37$ or $1.52 < \eta < 2.47$	$ \eta < 1.442$ or	1.56 < η < 2.5
$\mu\mu$	$p_{\rm T} > 25, 25 { m GeV}$	$p_{\rm T} > 45$, 45 GeV
	$ \eta < 1.05$	η < 2.4 (η < 2.1 f	For triggering muon)

- Leading systematic uncertainties come from the PDFs for background modeling (more information in backup slides), and lepton scale factors (statistically limited at high transverse momentum.)
 - ATLAS: 4% for all channels.
 - CMS: 3% for dimuon, 4(6)% for dielectron barrel-barrel (barrel-endcap).
- (Ditau in backup- please ask if you want to see details.)

Dilepton resonances

• Results from ATLAS and CMS:

ULB

ATLAS: $m(Z'_{SSM}) > 2.90 \text{ TeV}$

CMS: $m(Z'_{SSM}) > 2.90 \text{ TeV}$

Dilepton resonances

- Models and interpretations are not trivial:
 - Should we pick a width and make ourselves model dependent?
 - ATLAS: Yes! And include a relevant choice of interference terms.
 - CMS: No! We should assume zero width and be agnostic about structure.
 - Should we quote a cross section or a ratio?
 - ATLAS: A cross section (assuming 100% BF) so it's easier to interpret.
 - CMS: A ratio, to cancel out systematic uncertainties.

Diphoton resonances

 Both ATLAS and CMS investigate diphoton resonances.
 arXiV: 1505.04306
 CMS-PAS-EXO-12-045

ULB

• There are many models, with popular benchmarks including Randall-Sundrum graviton models.

- Generally slightly higher cross section due to presence of gluon-gluon fusion.
- Sensitive to spin-0 and spin-2 resonances.

Diphoton resonances

•	Kinematic selections:	PR	0 92, 032994 (2015)	CMS-PAS-EXO-12-045
	ATLAS		C	CMS
	$p_{\rm T} > 50~{ m GeV}$ $ \eta < 1.37~{ m or}~1.52 < \eta < 2.47$		$p_{ m T} >$ $ \eta <$ $m(\gamma\gamma) >$	80 GeV : 1.4442 > 300 GeV
•	Isolation selections:			

ATLAS	CMS
ECAL $E_{\rm T}^{iso}(\Delta R < 0.4) < 8 {\rm ~GeV}$	HCAL $\gamma_{iso}(\Delta R < 0.3)/E_{\rm T}(\gamma) < 0.05$

 Dominant systematic uncertainties: PDFs for background modeling, photon reconstruction efficiency, luminosity.

Diphoton resonances

Limits for $k/M_{Pl} = 0.1$: ATLAS: $m(G_{RS}) > 2.66$ TeV CMS: $m(G_{RS}) > 2.78$ TeV

Dijet resonances

- Dijet resonances tend to have very high mass reaches:
 - Coupling to hadronic initial and final states lead to high cross sections.
 - But also suffer from large backgrounds.
 - And have poor mass resolution due to jet energy scales.
 - Mass reach depends very much on the choice of model.

Dijet resonances

- Both ATLAS and CMS investigate dijet resonances.
- Many possible interpretations, including excited quarks, W' and Z' bosons, black holes etc.

•	Kinematic selections:	Р	RD 91, 052007	PRD 91, 052009
	ATLAS			CMS
	$p_{\rm T}(j) > 50 {\rm ~GeV}$ $ \eta(j) < 2.8$		$p_{\mathrm{T}}(j)$	> 30 GeV (<i>j</i>) < 2.5
	$\frac{1}{2}(\eta(j)_{\text{leading}} - \eta(j)_{\text{subleading}}) < 0.6$ and $m(jj) > 250 \text{ GeV}$ to remove p_{T} bias		m(jj) > 890 GeV	to remove trigger bias

- Dominant systematic uncertainties: jet energy scale, jet energy resolution, luminosity.
- (More final states in backup slides.)

Dijet resonances

ULB Run 1 "fast" searches summary

- The "fast" searches give unprecendeted mass reaches.
- Typically in the range of a few TeV.
- Results generally comparable between ATLAS and CMS
- Most sensitivity comes early on
 We are limited by the energy of the collisions.
- Classic bump searches with high discovery potential.
- Let's look at something more fun!

Run 1 complex final states

ULB

Fat jet tagging

- At the LHC with centre of mass energy of 7-13~TeV
 - $m_t = 175 \text{ GeV}, m_H = 125 \text{ GeV}, m_Z = 91 \text{ GeV}, m_W = 80 \text{ GeV}$
 - We can expect boosted bosons and top quarks at the LHC!
- How does a boosted object decay?
- A top quark decays a bit like this:

- For all hadronic decays the jets tend to overlap with each other.
- Overlapping jets are hard to work with.

Fat jet tagging

- Should we care about the hadronic decays?
- Yes! They make up > 50% of decays:

ULB

- What we need is "fat" jet reconstruction.
- With that we can search for resonances involving top quarks and massive bosons in the final state.

Top jet tagging

- "Top jets" have a distinctive substructure.
- ATLAS and CMS have developed "top tagging" algorithms.
- Example from the CMS tagger:
 - $-140 < m(j_t) < 250 \text{ GeV}$
 - $-N_{sub-jets} > 2$
 - Minimum pairwise mass, $m_{min} > 50 \text{ GeV}$
- Further selections per analysis
- Excellent discussion in the ATLAS paper: Eur. Phys. J. C (2015) 75:165

Top jet tagging

• The "sub-jettiness" variable is defined as τ_N :

$$\tau_N = \sum_i p_T^i \min\{\Delta R_{1,i} \dots \Delta R_{N,i}\} / \sum_i p_T^i R_0$$

- $-R_0$ is the characteristic jet radius.
- $-\tau_N$ measures consistency with a top decay.
- $-\tau_i/\tau_j$ are discriminating variables, peaking near 1 for *i* sub-jets and 0 for *j* sub-jets.
- Similar algorithms exist for *W*, *Z*, *H* bosons

Track t_i compared to sub-jets j_1 , j_2 :

Latest results: $T \rightarrow tH$

- ATLAS and CMS investigate vector like *T* quarks decaying to a *tH*.
- The CMS search makes use of boosted *t*-jet reconstruction:
 - At least one *t*-jet with $p_{\rm T}$ > 200 GeV, that contains at least one *b* tagged jet.
 - At least one jet consistent with a scalar boson (two *b* tagged jets and $m(j_{CA}) > 60 \text{ GeV}$).
 - $H_{\rm T} > 720 {
 m ~GeV}$
- For ATLAS there are non trivial kinematic selections and multiple final states.

/ents/(GeV/c)

6 CMS

3000

2500

H₊ (GeV/c)

Data QCD (from data)

_____ TT→tHtH (500 GeV/c²) TT→tHtH (700 GeV/c²) x10 TT→tHtH (1000 GeV/c²) x100

Single H tag category

Latest results: $T \rightarrow tH$

- Dominant systematic uncertainties:
 - QCD estimate, Flavour tagging, Jet energy corrections, H-tagging
- Need more than just mass variables to gain sensitivity.

Latest results: $W' \rightarrow tb$

- ATLAS and CMS investigate W' boson decaying to tb final state.
- Dedicated algorithms for top-tagged jets and W' candidates.

- Dominant systematic uncertainties: t-tbar production, top-tagging.
- Limits:

ULB

ATLAS: $m(W')_{\text{right handed}} > 1.92 \text{ TeV}$ CMS: $m(W')_{\text{right handed}} > 2.15 \text{ TeV}$

t-tbar resonances

- Both ATLAS and CMS search for t-tbar resonances.
- Many complex final states.
- Kinematic selections:

CMS-B2G-13-008

CERN-PH-EP-2015-090

	ATLAS	CMS
jets	anti-kT $\Delta R = 0.4$: $p_T(j) > 25$ GeV, $ \eta(j) < 2.5$ anti-kT $\Delta R = 1.0$: $p_T(j) > 300$ GeV, $ \eta(j) < 2.0$	$p_{\mathrm{T}}(j) > 100, 50 \text{ GeV } \eta(j) < 2.4$ Top-tagging
е	$E_{\rm T}(e)$ > 25 GeV $ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$ \eta(e) < 1.442 \text{ or } 1.56 < \eta(e) < 2.5$ $E_{\mathrm{T}}(e) > 85, 20 \text{ GeV}$ (depending on final state)
μ	$p_{\mathrm{T}}(\mu) > 25 \mathrm{~GeV}$ $ \eta(\mu) < 2.5$	$ \eta(\mu) < 2.1, 2.4$ $p_{\rm T}(\mu) > 85, 45, 20 {\rm GeV}$ (depending on final state)

- Dominant systematic uncertainties:
 - Jet energy scale, t-tbar normalisation, parton shower and fragmentation, luminosity.

t-tbar resonances

ULBVector boson resonances

- Many final states (*lljj*, *llll*, *lllv*, *jjjj*, *lvjj*) to consider.
- Benchmark models include W', Randall-Sundrum Graviton (G_{RS}) , Techni-colour.
- Results are not necessarily easy to compare between experiments.
- Leading systematics are usually jet energy scale and jet energy resolution for hadronic final states, lepton scale factors and luminosity for purely leptonic states.
- I cannot cover everything, so I only show the limits!

Vector boson resonances

ULB

Experiment	Search	Limits	arXiV
ATLAS	$G_{RS} \rightarrow l\nu jj$	$m(G_{RS}) > 700 \text{ GeV}$	1503.04677
ATLAS	W'→lvjj	$m(W') > 1490 { m GeV}$	1503.04677
ATLAS	$W' \rightarrow WZ \rightarrow lljj$	m(W') > 1590 GeV	1409.6190
ATLAS	$G_{RS} \rightarrow WZ \rightarrow lljj$	$m(G_{RS}) > 740 \text{ GeV } @ \text{k/MPl=1.0}$ $m(G_{RS}) > 540 \text{ GeV } @ \text{k/MPl=0.5}$	1409.6190
ATLAS	$\alpha_T \rightarrow l \nu \gamma$	$m(\alpha_T) > 960 \text{ GeV}$	1407.8150
ATLAS	$a_T \rightarrow ll\gamma$	$m(\alpha_T) > 890 \text{ GeV}$	1407.8150
ATLAS	$W' \rightarrow WZ \rightarrow lll\nu$	m(W') > 1520 GeV	1406.4456
CMS	$W' \rightarrow WZ \rightarrow lll\nu$	m(W') > 1550	1407.3476
CMS	$\varrho_{TC} \rightarrow WZ \rightarrow lll \nu$	$m(\varrho_{TC}) > 1140 { m ~GeV}$	1407.3476
CMS	$WZ \rightarrow (l\nu/ll) + jj$ Graviton bulk	$\sigma(m(G_{RS}) = 600 \text{ GeV}) < 700 \text{ fb-1}$ $\sigma(m(G_{RS}) = 2500 \text{ GeV}) < 10 \text{ fb-1}$	1405.3447
CMS	$q^* \rightarrow q W \rightarrow jjjj$	$m(q^*) > 3200 \text{ GeV}$	1405.1994
CMS	$q^* \rightarrow qZ \rightarrow jjjj$	$m(q^*) > 2900 \text{ GeV}$	1405.1994
CMS	$W' \rightarrow WZ \rightarrow jjjj$	m(W') > 1700 GeV	1405.1994
CMS	$G_{RS} \rightarrow WW \rightarrow jjjjj$	$m(G_{RS}) > 1200 \text{ GeV}$	1405.1994

$W' \rightarrow WZ \rightarrow lll\nu$

- Benchmark model of $W' \rightarrow WZ$.
- Clean final states.
- Kinematic selections:

PLB 737, 223 (2014)

PLB 2014.11.026

	ATLAS	CMS
е	$E_{\rm T}$ > 40, 30 GeV $ \eta < 1.37$ or $1.52 < \eta < 2.47$	$E_{\rm T}$ > 35 (20) GeV for Z (W) boson η < 1.442 or 1.56 < η < 2.5
μ	$p_{\rm T} > 25, 25 { m ~GeV}$ $ \eta < 1.05$	$p_{\rm T} > 25, 10 \text{ GeV for Z boson}$ $p_{\rm T} > 20 \text{ GeV for W boson}$ $ \eta < 2.4$

- Dominant systematic uncertainties:
 - ATLAS: Lepton scale factors, simulation statistics, luminosity.
 - CMS: Trigger efficiency, missing energy resolution, luminosity.

$W' \rightarrow WZ \rightarrow lll\nu$

The diboson bump

• Everything seemed fairly boring, and then...

The diboson bump

• Everything seemed fairly boring, and then...

ULB

The diboson bump

- ATLAS saw some bumps in the diboson mass spectra around 2 TeV!
- More detailed study with multiple final states:

ULB

The diboson bump

- Can't be a single new particle!
- Could it be a multiplet of charged and neutral states?
- As usual, the answer will come with more data
- 3.5σ local significance in $W' \rightarrow WZ \rightarrow JJ$

ULB

From Run 1 to Run 2

- With LHC Run 1 we had 5 $fb^{\text{-1}}$ at 7 TeV and 20 $fb^{\text{-1}}$ at 8 TeV
- What can Run 2 offer us?
- Naïvely, more of the same...
- ...except at 13 TeV

ULB

• In fact effective luminosity increases substantially!

ULB

• In fact effective luminosity increases substantially!

ULB

• In fact effective luminosity increases substantially!

• Luminosity of Run 2:

• About 2.5 fb^{-1} so far

• Luminosity of Run 2:

• About 2.5 fb^{-1} so far

Some Run 2 results

• Only a handful of results released so far 2015-07-13 09:38:38 CEST

ULB

ATLAS diphoton search

 Latest ATLAS results for the diphoton search:

• No bump with 78 pb⁻¹

 $m(\gamma\gamma) = 940 \text{ GeV}$

ATLAS dijet search

• The dijet searches benefit form the new mass reach

ATLAS dijet search

CMS dijet search

• The dijet searches benefit form the new mass reach

CMS dijet search

• Also no bump seen here

ATLAS dilepton search

Latest ATLAS results for the dilepton searches:

AS

Date: 2015-07-12 08:14:12 CEST

ATLAS dilepton search

• Latest ATLAS results for the dilepton searches:

• Latest CMS results for the dilepton searches:

• No bump with 42-48 pb⁻¹

ULB

• Highest mass dimuon event

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

m(ee) = 2970 GeV

CMS 3 TeV m(ee) event

Mass range

m(ee) > 1 TeV

m(ee) > 2 TeV

m(ee) > 2.5 TeV

SM expectation

0.21

0.007

0.002

- What is this 3 TeV event?
 - Hard to tell for a single event
 - Expectation of SM events:
- Are they real electrons?
 Yes, we find no issues with the objects or event.
- The positron is more boosted than the electron $-\cos\theta_{CS} = -0.49$ (DY favours positive values.)
- ATLAS and CMS have not seen similar events in other channels.

CMS 3 TeV m(ee) event

• Event display with kinematic variables:

Dielectron strategy

- The dielectron search is relatively simple:
 - A dedicated high energy electron pair (HEEP) ID has been developed:
 - Cut based by design to keep it simple and credible.
 - Some tweaks to handle high energy (eg isolation.)
 - Largely unchanged since 2012, except for E(HCAL)/E(ECAL).
 - Normalise cross sections to the Z peak
 - Cancel out most systematic uncertainties.
 - Enable a very rapid analysis, no need to wait for luminosity measurements.
 - Many fail safes built in from an early stage:
 - Redundant triggers, *B*=0 T strategy, supercluster only studies.

Dielectron strategy

- ID is very simple:
- $E_{\rm T} > 35 \text{ GeV}$ ("low" enough to get a good Z peak)
- $|\eta| < 2.5$, excluding transition the regions.
- Various shower shape and track matching variables.
- *E*(HCAL)/*E*(ECAL) < 0.05 + energy dependent term
- Calorimeter isolation is relative with a constant term
 - A purely relative term is not acceptable, as 10% of $1~{\rm TeV}$ is $100~{\rm GeV!}$

ULB Dielectron challenges at 13 TeV

- Working at 13 TeV brings new problems...
 - A 2.5 TeV electron can reach the limits of the CMS ECAL.
 - This is known as saturation.
 - Must be taken into account if we are to see $5 \ \mbox{TeV}$ objects.
 - Studies ongoing.
 - Use of multivariate techniques and detailed understanding of ECAL geometry to recover saturated crystals.

ULB Dielectron challenges at 13 TeV

- Working at 13 TeV brings new problems...
 - A new SM process comes into play.
 - Protons can exchange photons to give us photon induced (PI) backgrounds:

- Irreducible background.
- PDFs not well known.
- Some studies suggest primary vertex track multiplicities might be lower for PI backgrounds.

ULB CMS dielectron summary

- The punch line is, as usual, to "wait and see".
- We may see more 3 TeV events rain down in 2016.
- Or we may just be extremely (un)lucky.
- Let's hope for more events!

Summary

LHC Run 1 has seen many very active searches for new resonances.

Some excitement with the 2 TeV bump in ATLAS. Run 2 is already underway with significantly increased mass reach.

Some excitement with the 3 TeV event in CMS

An interesting start, let's hope for more in 2016!

Run: 204153 Event: 35369265 2012-05-30 20:31:28 CEST

Summary

LHC Run 1 has seen many very active searches for new resonances.

Some excitement with the 2 TeV bump in ATLAS. Run 2 is already underway with significantly increased mass reach.

Some excitement with the 3 TeV event in CMS

An interesting start, let's hope for more in 2016!

Thanks for listening

Event: 35369265 2012-05-30 20:31:28 CEST

PDFs and background uncertainties Ditau resonances Lepton flavour violating decays Further multi-jet resonances

Run: 204153 Event: 35369265 2012-05-30 20:31:28 CEST

ULB PDFs and background uncertainties

- For many searches (dilepton, ditau, diphoton) the dominant systematic uncertainties come from PDF uncertainties on the background
 - Often vary widely as a function of mass
 - Hard to quantify without giving benchmarks
 - Good example from ATLAS dilepton search (arXiV: 1405.4123):

TABLE III. Summary of systematic uncertainties on the expected numbers of events at a dilepton mass of $m_{\ell\ell} = 2$ TeV, where N/A indicates that the uncertainty is not applicable. Uncertainties < 3% for all values of m_{ee} or $m_{\mu\mu}$ are neglected in the respective statistical analysis.

TABLE IV. Summary of systematic uncertainties on the ex-
pected numbers of events at a dilepton mass of $m_{\ell\ell} = 3$ TeV,
where N/A indicates that the uncertainty is not applicable.
Uncertainties $< 3\%$ for all values of m_{ee} or $m_{\mu\mu}$ are neglected
in the respective statistical analysis.

												_
	Source $(m_{\ell\ell} = 2 \text{ TeV})$	Diele	ctrons	Dimuons		•	Source $(m_{\ell\ell} = 3 \text{ TeV})$	Diele	ctrons	Din	nuons	_
		Signal	Backgr.	Signal	Backgr.			Signal	Backgr.	Signal	Backgr.	
2 TeV	Normalization	4%	N/A	4%	N/A		Normalization	4%	N/A	4%	N/A	
	PDF variation	N/A	11%	N/A	12%		PDF variation	N/A	30%	N/A	17%	
	PDF choice	N/A	7%	N/A	6%		PDF choice	N/A	22%	N/A	12%	
	α_s	N/A	3%	N/A	3%		$lpha_s$	N/A	5%	N/A	4%	
	Electroweak corr.	N/A	2%	N/A	3%		Electroweak corr.	N/A	4%	N/A	3% ,	
	Photon-induced corr.	N/A	3%	N/A	3%		Photon-induced corr.	N/A	6%	N/A	4% .	3 Iev
	Beam energy	< 1%	3%	< 1%	3%		Beam energy	< 1%	5%	< 1%	3%	
	Resolution	< 3%	< 3%	< 3%	3%		Resolution	< 3%	< 3%	< 3%	8%	
	Dijet and $W + jets$	N/A	5%	N/A	N/A		Dijet and $W + jets$	N/A	21%	N/A	N/A	
	Total	4%	15%	4%	15%		Total	4%	44%	4%	23%	_

Ditau resonances

- Results from ATLAS and CMS
- ATLAS considers au_{had} - au_{had} and au_{had} - au_{lep} final states (au_{had} is a au jet)
- CMS consider τ_e - τ_μ final states
- Kinematic selections:

ULB

PRD 90, 052005

CMS-PAS-EXO-12-046

	ATLAS	CMS
$ au_{had}$	$p_{\rm T}(\tau_{had}) > 30 \text{ GeV}$ $ \eta(\tau_{had}) < 1.37 \text{ or } 1.52 < \eta(\tau_{had}) < 2.47$	
е	$E_{\rm T}(e)$ > 15 GeV $ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$E_{\rm T}(e) > 20 \ {\rm GeV} \\ \eta(e) < 1.442 \ {\rm or} \ 1.56 < \eta(e) < 2.5 \\$
μ	$p_{\rm T}(\mu) > 10 { m ~GeV}$ $ \eta(\mu) < 2.5$	$p_{\mathrm{T}}(\mu) > 20 \; \mathrm{GeV}$ $ \eta(\mu) < 2.1$

 Dominant systematic uncertainties: PDFs for background modeling, Signal efficiency for ATLAS, data driven background estimates for CMS.

Ditau resonances

• Exclusion limits:

ULB

- ATLAS: $m(Z'_{SSM}) > 2.02 \text{ TeV}$
- CMS: $m(Z'_{SSM}) > 1.30 \text{ TeV}$

ULB Lepton flavour violating resonances

- Results from ATLAS and CMS
- ATLAS considers e- μ , e- τ , and μ - τ final states
- CMS consider *e*-µ final states
- Kinematic selections:

ATLAS	CMS
$p_{\rm T}(\tau_{had})$ > 25 GeV $ \eta(\tau_{had}) < 2.47$ Single track	
$E_{\rm T}(e)$ > 25 GeV	$E_{\rm T}(e) > 35 {\rm ~GeV}$
$ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$ \eta(e) < 1.442 {\rm ~or~} 1.56 < \eta(e) < 2.5$
$p_{\mathrm{T}}(\mu) > 25 \; \mathrm{GeV}$	$p_{\rm T}(\mu) > 45 { m ~GeV}$
$ \eta(\mu) < 2.4$	$ \eta(\mu) < 2.1$

Dominant systematics: Acceptance and efficiency, 3-6% for ATLAS, ~5% for CMS.

arXiv:1503.054420

arXiv:1504.055115

ULB Lepton flavour violating resonances

• ATLAS investigates $e\mu$, $e\tau$, $\mu\tau$ final states.

ULB Lepton flavour violating resonances

Limit: $m(\tilde{\nu}_{\tau}) > 2.1 \text{ TeV}$
ULB Further multi-jet resonances

 CMS also investigate pair produced resonances decaying to jets, and three-jet final states:

Phys. Lett. B 730 (2014) 193

Exclude top squark masses for decays to light (heavy) jets in range: 200 < m(jj) < 350 (385) GeV

Dominant uncertainties: Jet energy scale, resolution, initial and final state radiation, signal fits

Exclude gluino masses for decays to light (heavy) jets in range: 0 (200) < m(jjj) < 350 (835) GeV

arXiv:1412.7706

Aidan Randle-Conde (ULB), University of Liverpool Seminar, 2015/10/28

HEEP ID V6.0	Barrel	Endcap
E_T	< 35 GeV	
η	$ \eta_{SC} < 1.4442$	$1.566 < \eta_{SC} < 2.5$
isEcalDriven	=1	
$ \Delta\eta_{in}^{seed} $	< 0.004	< 0.006
$ \Delta \phi_{in} $	< 0.06	
H/E	< 1/E + 0.05	< 5/E + 0.05
full 5x5 $\sigma_{i\eta i\eta}$	_	< 0.03
full 5×5 $E_{1\times 5}/E_{5\times 5}$	> 0.83	-
full 5x5 $E_{2\times 5}/E_{5\times 5}$	> 0.94	-
Inner layer lost hits	< 2	
$d_{xy}(first PV)$	< 0.02	< 0.05
EM+had depth1 iso	$< 2 + 0.03 \text{ ET} + 0.28 \varrho$	$E_{\rm T} < 50: < 2.5 + 0.28\varrho$ $E_{\rm T} > 50: < 2.5 + 0.03(E_{\rm T}-50) + 0.28\varrho$
Track pt iso	< 5 GeV	< 5 GeV

