

Recent results and prospects of quark flavour physics

Marco Gersabeck (The University of Manchester) Particle Physics Seminar, Liverpool, 3/6/2015

Two roads to discovery

New particles = New planets

ESA/Hubble

Direct searches

Reach limited by amount of fuel

ESA/Rosetta/NAVCAM

Indirect searches

Look for subtle deviations in known processes

David A. Aguilar (CfA)

Flavour physics: Fast-tracking discoveries

- $K^0 \overline{K}^0$ mixing and smallness of $K^0 \rightarrow \mu^+ \mu^-$
 - GIM mechanism predicts charm quark in 1970
- Kaon CP violation
 - KM mechanism predicts bottom and top quarks in 1973
 - Charm & bottom quarks discovered: 1974+1977
- $B^0 \overline{B}^0$ oscillations discovered in 1987
 - \Rightarrow Requires $m_{top} > 50$ GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

Flavour physics: Fast-tracking discoveries

- $B^0 \overline{B}^0$ oscillations discovered in 1987
 - \Rightarrow Requires $m_{top} > 50$ GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

MANCHESTER 1824 The University of Manchester Flavourful experiments

High-energy proton-proton collisions→ General purpose flavour experiment

Fixed target rare kaon decay experiments

Outline

- A closer look at KM mechanism
 - Selected highlights
- The needles in the haystack
 - ➡ Rare decays
- A brief visit to the particle zoo
 - Other physics areas
- Future directions
 - Upgrade programmes

CKM matrix

• Unitary matrix combining flavour and mass eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Unitarity relations lead to triangles in complex plane

CKM matrix

Unitary matrix combining flavour and mass eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity relations lead to triangles in complex plane

$$\begin{aligned} \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} &= 0 \qquad \mathsf{B}_{d} \text{ triangle} \\ \frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} + 1 + \frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} &= 0 \qquad \mathsf{B}_{s} \text{ triangle} \\ \frac{V_{ud}V_{cd}^*}{V_{us}V_{cs}^*} + 1 + \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*} &= 0 \qquad \mathsf{D} \text{ triangle} \\ &= 4 3 \text{ mores} \end{aligned}$$

CKM and beyond

- A decade of precision measurements
- Huge success for BaBar and Belle

CKM today

- 2010-2020
 - Enter LHCb
- Looking for these little ripples caused by particles beyond the standard model

Measuring $sin(2\beta)$

- Based on golden channel $B^0 \rightarrow J/\psi K_s$
- Primary objective of B-factories
- Measure time-dependent CP asymmetry of $\Rightarrow B^{0} \rightarrow J/\psi K^{0}, K^{0} \rightarrow \pi^{+}\pi^{-}$ and charge conjugate
- Amplitude proportional to $sin(2\varphi_{weak})$

$$\begin{pmatrix} V_{td}V_{tb}^{*} \\ V_{td}^{*}V_{tb} \end{pmatrix} \begin{pmatrix} V_{cs}^{*}V_{cb} \\ V_{cs}V_{cb}^{*} \end{pmatrix} \begin{pmatrix} V_{cs}V_{cd}^{*} \\ V_{cs}^{*}V_{cd} \end{pmatrix} = \begin{pmatrix} V_{td}V_{tb}^{*} \\ V_{cd}V_{cb}^{*} \end{pmatrix} \begin{pmatrix} V_{cd}^{*}V_{cb} \\ V_{cd}V_{cb}^{*} \end{pmatrix} \begin{pmatrix} P_{cd}^{*}V_{cb} \\ V_{cd}V_{cb}^{*} \end{pmatrix} \begin{pmatrix} V_{cd}^{*}V_{cb} \\ V_{cd}V_{cb}^{*} \end{pmatrix} \begin{pmatrix} P_{cd}^{*}V_{cb} \\ P_{cd}^{*}V_{cb} \end{pmatrix} \begin{pmatrix}$$

New LHCb results

- Full run-I data
 - ➡ 42k candidates
- Improved flavour tagging $\Rightarrow \epsilon D^2 = 3\%$

- Complementary measurement to $sin(2\beta)$
 - Angle vs opposite side
 - Inconsistency would signal new physics
- Access through (semi-)leptonic decays
 - \rightarrow b \rightarrow ul υ transitions
- Inclusive vs exclusive measurements
 - $\Rightarrow B^0 \rightarrow \pi^- I^+ \upsilon$
 - $\Rightarrow B^+ \rightarrow \tau \upsilon$

 $B^+ \rightarrow \tau^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

 $B^+ \rightarrow \tau^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv: 1409.5269

 $B^+ \rightarrow \tau^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv:1409.5269 LHCb, sin(2 β), arXiv:1503.07055

 $B^+ \rightarrow \tau^+ v$

• Proportional to |V_{ub}|

• Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv:1409.5269 LHCb, sin(2 β), arXiv:1503.07055

PDG 2014

*from Kowalewski, Mannel in PDG 2014: Inclusive: average of BLNP, GGOU, DGE determination Exclusive: BCL parametrisation of q² range and FNAL/MILC results

New opportunities

- LHCb has access to Λ_b baryons
- Can use these to measure the ratio of

MANCHESTER |

The University of Manchester

- $\Rightarrow \Lambda_b \rightarrow p \mu \upsilon \text{ to } \Lambda_b \rightarrow \Lambda_c \mu \upsilon$
- \Rightarrow Measures $|V_{ub}|^2 / |V_{cb}|^2$

- ➡ Use theory input to measure relative acceptance in q² -→ W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421
- Large data samples allow tight cuts to obtain high purity
 - Using 2012 data
 corresponding to 2 fb⁻¹

arXiv:1504.01568, submitted to Nature Physics

Results

*from PDG 2014: Inclusive: |V_{ub}| (BLNP) Exclusive: BCL parametrisation of q² range and FNAL/MILC results

New physics?

 Right-handed currents affect different |V_{ub}| extractions in different ways

Decay	$ V_{ub} \times 10^3$	ϵ_R dependence
$B\to \pi\ell\bar\nu$	3.23 ± 0.30	$1 + \epsilon_R$
$B \to X_u \ell \bar{\nu}$	4.39 ± 0.21	$\sqrt{1+\epsilon_R^2}$
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$1 - \epsilon_R$

 Right-handed currents affect different |V_{ub}| extractions in different ways

MANCHESTER

The University of Manchester

Decay	$ V_{ub} \times 10^3$	ϵ_R dependence
$B\to \pi\ell\bar\nu$	3.23 ± 0.30	$1 + \epsilon_R$
$B \to X_u \ell \bar{\nu}$	4.39 ± 0.21	$\sqrt{1+\epsilon_R^2}$
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$1 - \epsilon_R$

MANCHESTER 1824 The University of Manchester More fun with semileptonics

 Lepton universality test with favoured Bmeson decays

 $R(D^*) = \mathcal{B}(\overline{B}{}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$

- Sensitive to physics beyond the SM
 - Particularly to charged Higgs
- B-factory measurements
 point at deviation
 from SM

MANCHESTER 1824 The University of Manchester More fun with semileptonics

 Lepton universality test with favoured Bmeson decays

 $R(D^*) = \mathcal{B}(\overline{B}{}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$

- Sensitive to physics beyond the SM
 - Particularly to charged Higgs
- B-factory measurements
 point at deviation
 from SM

New LHCb measurement

- Using $\tau \rightarrow \mu \upsilon_{\tau} \overline{\upsilon}_{\mu}$ decays
 - \rightarrow Reconstruct $D^{*+}\mu^{-}$ in both cases
- Systematic uncertainty dominated by reducible effects
 - Sample size to extract fit templates
 - Background estimate
 from mis-identified
 muons

Measuring Y

- $\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$
- Essentially measuring the phase of V_{ub}
- Least well measured CKM angle
- Measure CP violation in $B_{(s)} \rightarrow D_{(s)}hX$ decays
- Same idea as sin(2β)
 - But no tagging needed
- Many different methods
 - Combinations of B and D decays
 - Time-integrated and time-dependent

CP violation in $B^- \rightarrow D(K^+\pi^-\pi^0)\pi^-$

- Methods for $B^{(0,-)} \rightarrow Dh$ (h= π,K,K^*) decays
 - Observables are time-integrated ratios of rates and rate asymmetries
- ADS
 - Measure favoured B decay with doubly Cabibbo-suppressed D decay and vice versa
- GLW
 - Measure favoured/suppressed B decays with D decaying into CP eigenstate
- GGSZ
 - Measure favoured/suppressed B decays with D decaying into multibody final state including Dalitz analysis
- In addition using $B_s \rightarrow D_s K$ decays
 - Need to perform time-dependent measurement of rates and asymmetries

MANCHESTER 1824 The University of Manchester Improving V precision

- Combining LHCb measurements of $B_{(s)} \rightarrow DK^{(*)}$ decays
- Precision better than 10°
- Not yet including all run-1 data
- BaBar average :
 - ⇒ (70±18)°
- Belle average :
 - ➡ (73±I4)°

1-CL LHCb Preliminary 0.8 $72.9^{+9.2}_{-9.9}$ 0.6 0.4 68.3% 0.2 95.5% 50 70 80 60 90 100 110 LHCb-CONF-2014-004 γ [°]

- All based on tree decays
 - SM measurements
 - ➡ Access to beyond SM particles through loops in γ measurements using B→hh(h) decays

*CKMFitter Summer 2014

Mixing and CP violation in B_s mesons

$sin(2\beta_s)$

- Equivalent to $sin(2\beta)$ for B_d system
- Tiny SM prediction:
 - ⇒ $\beta_s \sim 1.0^\circ$ → CKMFitter 2014, Lenz, Nierste 2011
- Golden channel:
 - $\Rightarrow B_s \rightarrow J/\psi \phi \rightarrow \mu \mu K K$
- Requires time-dependent angular analysis
- Can also use

 \Rightarrow B_s \rightarrow J/ ψ K K, B_s \rightarrow J/ ψ \pi π , B_s \rightarrow D_s D_s

- Measurement closely linked to width difference
 - \rightarrow B_s mass eigenstates predicted to have non-zero $\Delta\Gamma_s$

Latest results

Latest results

Latest results

• Theory prediction of $\Delta\Gamma_s$ confirmed

MANCHESTER

The University of Manchester

- Still room for anomalous weak phase
- Need very large data sample to achieve sufficient precision

Charm

Charm: hardly a triangle

- Only up-type quark to form weakly decaying hadrons
 - Unique physics access
- Mixing
 - Huge cancellations
 - Theoretically difficult
- CP violation
 - Predictions even smaller
- Need highest precision
- Huge LHCb dataset
 - Blessing and a curse

Need 1000 lifetimes to see a full D^0 - \overline{D}^0 oscillation

→ Not enough charm in the universe!

Mixing discovery

Using roughly 8.4×10⁶ RS and 3.6×10⁴ WS candidates

$$R(t) \equiv \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_d + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} (\frac{t}{\tau})^2$$

- First single-experiment measurement
 >5σ significance
- Rotation of mixing parameters by strong phase difference: x,y → x',y'

PRL 110 (2013) 101802

On strong phases

 Measurements of strong phases are only possible with quantum-entangled charm states

⇒ ψ(3770) → DD

- Only running experiment
 - BESIII at BEPC collider in Beijing
- Essential input to exploit large LHCb charm samples fully
 - Need best possible sensitivity to measure tiny effects in charm

Mixing-related CP violation

MANCHESTER

The University of Manchester

- A range of measurements contributing
 - Combine and conquer
- Now dominated by LHCb
- Consistent with CP symmetry

Measurement based on D→Kπ decays Measurements based on D→KK,ππ,K_sππ decays

- CP violating weak phase

CP violation

- World's best precision on charm CP violation
 - Achieved sub-10⁻³ precision
- LHCb dominating the picture
- Agreement with CP violation hypothesis at 1.8% level

CP violation in decay

Rare decays

Precision needle stack physics

$B_{(s)} \rightarrow \mu^+ \mu^-$

 \overline{b}

 X^+

 W^{-}

 \mathcal{V}

 μ

- Very rare decays
 - Precise SM predictions and high sensitivity to BSM physics

 μ^{-}

- Joint analysis by CMS and LHCb
- First observation of $B_s \rightarrow \mu^{T} \mu^{T}$
- First evidence for $B_d \rightarrow \mu' \mu'$
- No disagreement with SM
- Now measure B_d/B_s ratio, lifetime, ...
 - ➡ Need much more data

${\cal B}(B^0_s\to \mu^+\mu^-)$	=	$(2.8^{+0.7}_{-0.6}) \times 10^{-9}$
$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	=	$(3.9^{+1.6}_{-1.4}) \times 10^{-10}$

 \overline{b}

S

 μ^+

 μ^{-}

 X^0

To be published in Nature tomorrow

 $B_d \rightarrow K^* \mu^+ \mu^-$

- Flavour-changing neutral current decay
 - Particular sensitivity to electromagnetic penguins
- Angular analysis can unravel contributions from different physics processes
 - Forward-backward asymmetry of muons, A_{FB}
 - \rightarrow Longitudinal polarisation fraction of K^{*}, $F_L \propto \cos^2 \theta_K$
 - ➡ Further angular observables, S_i (i=3,4,5,6)
 - Derived observables with reduced form-factor dependence, P_i' = S_i/√F_L(I-F_L)

• Some slight surprise in P₅'

 $B_d \rightarrow K^* \mu^+ \mu^-$ results

• Some slight surprise in P₅'

MANCHESTER

The University of Manchester

• Now measured at higher precision

SM prediction from Descotes-Genon, Hofer, Matias, Virto, JHEP 1412 (2014) 125

MANCHESTER 1824 The University of Manchester The University of Manchester

Z' still possible within indirect and direct constraints

- "All [New Physics model] consistency tests^{*} we have done so far are nicely fulfilled with 3 fb⁻¹ showing robustness of data." (Matias @ Moriond EW)
- "q² dependence indicates that (unexpectedly) huge charm effect mimicking $C_9^{NP} < 0$ at intermediate q² could solve the tensions as well." (Straub @ Moriond EW)

* Relevant Observables included: $B \to K^* \mu^+ \mu^-$ ($P_{1,2}$, $P'_{4,5,6,8}$, F_L in all 5 large-recoil + low-recoil), $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0 \mu^+ \mu^-$, $\mathcal{B}_{B \to X_s \gamma}$, $\mathcal{B}_{B \to X_s \mu^+ \mu^-}$, $\mathcal{B}_{B_s \to \mu^+ \mu^-}$, $\mathcal{A}_I(B \to K^* \gamma)$, $\mathcal{S}_{K^* \gamma}$

Theory perspective

* Relevant Observables included: $B \to K^* \mu^+ \mu^-$ ($P_{1,2}$, $P'_{4,5,6,8}$, F_L in all 5 large-recoil + low-recoil), $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0 \mu^+ \mu^-$, $\mathcal{B}_{B \to X_s \gamma}$, $\mathcal{B}_{B \to X_s \mu^+ \mu^-}$, $\mathcal{B}_{B_S \to \mu^+ \mu^-}$, $A_I(B \to K^* \gamma)$, $S_{K^* \gamma}$

Many more LHCb results adding to the picture!

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$

- Precise SM predictions • BR($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$)=(7.8±0.8±0.3)×10⁻¹¹
- Sensitive to contributions from beyond SM
- Dedicated experiment running at CERN

➡ NA62

- Experimental challenge
 - Final state with only one out of three particles detectable

• Aim

Collect 100 events at SM BR

Previous experiments

BR(K⁺ $\rightarrow \pi^+ \upsilon \overline{\upsilon}) = (1.7 \pm 1.1) \times 10^{-10}$ PRD 77 (2008) 052003, PRD 79 (2009) 092004

First NA62 data

- Close to online snapshot
 - No kaon tracker, no photon rejection, no alignment, preliminary reconstruction, ...
- Distributions match expectations for this level of reconstruction
 - Promising for final performance
- Physics runs starting 2015

A brief visit to the particle zoo

Other physics areas

Some examples

Some examples

New states

- Excited B_c meson state found
 - ➡ B_c(2S), ATLAS, PRL 113 (2014) 212004
- Two excited beauty baryons found $\Rightarrow \Xi_b^{'}, \Xi_b^{*}, LHCb, PRL 114 (2015) 062004$
- And others also from Belle, BESIII, CMS, ...
- Slowly completing the quark model

Proton structure

- Unique kinematic range
 - High-energy collisions
 - Forward acceptance
- Probing very low
 Bjorken-x at much
 higher momentum
 transfer compared to
 HERA

Central

exclusive production

- Can measure central exclusive production
 - Signal tracks plus otherwise empty detector
 - Mediated through pompon exchange
- New Y production results allow to judge on convergence of theory prediction
 - Probe gluon PDF at low x
- Much increased potential during run-2
 - Installed forward shower counters

Top production

- Combined measurement of single-top and tt production in forward region
- Based on μ + b-jet reconstruction
- b and c jet tagging

arXiv:1504.07670, accepted by JINST

⇒ 2 BDTs, secondary vertex detection, corrected mass

• W+b,c production (asymmetry) measurement

arXiv:1505.04051, submitted to PRD

• 5.4 σ observation of top production

arXiv:1506.00903, submitted to PRL

Future directions

Upgrading flavour experiments

MANCHESTER 1824 The University of Manchester A flavourful decade

Plus lots of activity on charged lepton flavour
 MEG, mu3e, mu2e, COMET, g-2, ...

• NA62

Pilot run for detector commissioning in 2014

- Detectorcompletion in 2015
- Runs scheduled until LS2

LHCb upgrade

- R&D ongoing and on schedule
- Installation planned for LHC long shutdown 2
- Major construction project
 - Vertex Locator and RICH built in UK
- Full software trigger
 - Massively improved trigger efficiencies
 - Offline quality reconstruction in trigger
- Maintain/improve current level of detector performance

Conclusion

- LHC(b) now taken over leading role in flavour physics
- No smoking gun signal for physics beyond the SM
 - Several hints demand more precise and complementary measurements as well as advances on the theoretical side
- Good chance that strong signals will emerge with run-2
 - Including from NA62
- Need LHCb upgrade to probe to Standard Model level precision
- Next decade will be flavourful
 - Belle II, BESIII, COMET, g-2, LHCb run-2, LHCb upgrade, MEG, mu2e, mu3e, NA62

Conclusion

- LHC(b) now taken over leading role in flavour physics
- No smoking gun signal for physics beyond the SM
 - Several hints demand more precise and complementary measurements as well as advances on the theoretical side
- Good chance that strong signals will emerge with run-2
 - Including from NA62
- Need LHCb upgrade to probe to Standard Model level precision
- Next decade will be flavourful
 - Belle II, BESIII, COMET, g-2, LHCb run-2, LHCb upgrade, MEG, mu2e, mu3e, NA62

Many thanks to

- ➡ Wolfgang Altmannshofer
- ➡ Pete Clarke
- ➡ Greig Cowan
- ➡ Markus Cristinziani
- ➡ Wolfgang GradI
- ➡ Iskander Ibragimov
- ➡ Moritz Karbach
- Patrick Koppenburg
- ➡ Sören Lange
- ➡ Frank Meier
- Matthew Molson
- ➡ Franz Muheim
- Patrick Owen
- Chris Parkes
- ➡ Darren Price
- ➡ Guiseppe Ruggiero
- ➡ Will Sutcliffe
- ➡ Philip Urqijo
- ➡ Rainer Wanke

BACKUP

 $B^+ \rightarrow T^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

 $B^+ \rightarrow T^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv: 1409.5269

 $B^+ \rightarrow \tau^+ v$

- Proportional to |V_{ub}|
- Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv:1409.5269 LHCb, sin(2 β), arXiv:1503.07089

 $B^+ \rightarrow \tau^+ v$

Proportional to |V_{ub}|

• Slight discrepancy between $sin(2\beta)$ and BR(B $\rightarrow \tau v$)

Belle, $B^+ \rightarrow \tau^+ \nu$, arXiv:1409.5269 LHCb, sin(2 β), arXiv:1503.07089

CP violation in mixing

- Look for $\overline{B} \rightarrow I^{\dagger}$ decays
 - → Forbidden directly, requires \overline{B} →B oscillation
- Measure asymmetry of $\overline{B} \rightarrow I^{\dagger}$ and $B \rightarrow I^{\dagger}$ rates
 - CP violation in mixing
- SM expectation far below current sensitivity
- Can measure this separately for B_d and B_s mesons

 \Rightarrow Separate access to $A_{sl}(B_d) \& A_{sl}(B_S)$

- Alternatively look for same-sign lepton pairs and compare 1 with 11
 - \rightarrow Measures combination of $A_{sl}(B_d) \& A_{sl}(B_S)$

Latest results

- D0 dimuon measurement differs from SM by about 3σ
 - Difficult to motivate by non-SM physics
- Direct measurements of A_{sl}(B_d) & A_{sl}(B_S) show agreement with SM
- Possible differences in SM contribution to observables?
- LHCb has best single measurement of A_{sl}(B_d)
 - Full run-1 update of A_{sl}(B_s) in progress

MANCHESTER 1824 The University of Manchester Testing lepton universality

$$R_{K} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B^{+} \to K^{+}\mu^{+}\mu^{-}]}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B^{+} \to K^{+}e^{+}e^{-}]}{dq^{2}} dq^{2}},$$

$$1 < q^2 < 6 \text{ GeV}^2/c^4$$

$$R_K = 0.745^{+0.090}_{-0.074}$$
(stat) ± 0.036 (syst).

$sin(2\beta)$ systematics

Origin	$\sigma_{ m S}$	σ_{C}
Background Tagging Asymmetry	0.0179 (2.5 %)	0.0015 (4.5 %)
Tagging calibration	0.0062 (0.9 %)	0.0024 (7.2%)
$\Delta\Gamma_d$	0.0047 (0.6 %)	
Δm_d		0.0034 (10.3 %)
Fraction of wrong PV component	0.0021 (0.3 %)	0.0011 (3.3 %)
z-scale	0.0012(0.2%)	0.0023 (7.0 %)
Upper decay time acceptance	—	0.0012 (3.6 %)
Low decay time acceptance		
Decay time resolution calibration		
Decay time resolution offset		
Correlation between mass and decay time		
Production asymmetry		
Sum	0.020 (2.7 %)	0.005 (15.2%)

$\frac{MANCHESTER}{1824}$ The University of Manchester V_{ub} with new lattice results

CKM 2014, Vienna, Austria

New states

- Excited B_c meson state found
 - ➡ B_c(2S), ATLAS, PRL 113 (2014) 212004
- Two excited beauty baryons found
 - ⇒ Ξ_b, Ξ_b, LHCb, PRL 114 (2015) 062004
- And others also from Belle, BESIII, CMS, ...
- Slowly completing the quark model
- More exotic particles
 - ➡ XYZ states

Key sensitivities

Table 28: Expected sensitivities that can be achieved on key heavy flavour physics observables, using the total integrated luminosity recorded until the end of each LHC run period. Note that operation in Run 5 and beyond assumes integrating luminosity beyond the proposed total for the LHCb upgrade of 50 fb⁻¹. Uncertainties on ϕ_s are given in radians.

	LHC era			HL-LHC era		
	Run 1	$\operatorname{Run} 2$	Run 3	Run 4	$\operatorname{Run} 5+$	
$\phi_s(B^0_s \to J/\psi\phi)$	0.05	0.025	0.013	0.009	0.006	
$\phi_s(B^0_s o \phi \phi)$	0.15	0.10	0.029	0.018	0.012	
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	220%	110%	60%	40%	28%	
$q_0^2 A_{\rm FB}(K^{*0}\mu^+\mu^-)$	10%	5%	2.8%	1.9%	1.3%	
γ	7°	4°	1.3°	0.9°	0.6°	
$A_{\Gamma}(D^0 \to K^+ K^-)$	$3.4 imes10^{-4}$	$2.2 imes 10^{-4}$	$0.7 imes 10^{-4}$	$0.4 imes10^{-4}$	$0.3 imes 10^{-4}$	

MANCHESTER The University of Manchester Monore key sensitivities

Table 27: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb^{-1} recorded during Run 2) and for the LHCb Upgrade (50 fb^{-1}). An estimate of the theoretical uncertainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi f_0(980)) \text{ (rad)}$	0.068	0.035	0.012	~ 0.01
	$A_{ m sl}(B^0_s)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
$\operatorname{penguin}$	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
$\operatorname{penguin}$	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
$\operatorname{penguin}$	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
${ m triangle}$	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	$\mathbf{negligible}$
angles	$eta(B^0 o J/\psi K_{ m S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
$C\!P$ violation	$\Delta A_{CP}~(10^{-3})$	0.8	0.5	0.1	_