

Rare Kaon Physics

Giuseppe Ruggiero (CERN) Liverpool , 10/02/2015

Outline

- **x** Kaon Physics: overview
- **x** Present days: setting the context
- **x** (Brief) theoretical introduction to $K \rightarrow \pi \nu \bar{\nu}$
- × NA62 @ CERN SPS
- **×** A glance toward the future
- **×** Conclusions

CÉRN

Kaon Physics: a Building Block of the Standard Model

- ★ Discovery of strange particles: first observation of a quark-flavour not present in the ordinary matter [*Nature 160 4077 (1947) 855*]
- ★ Postulation of neutral meson oscillation [*Phys. Rev* 97 (1955) 1387]
- × θ τ puzzle: first hint of P violation [*Phys. Rev.* 104 (1956) 254]
- ★ Discovery of CP violation in the K⁰ mixing [Phys. Rev. Lett. 13 (1964) 138]
- ★ 3 quark-model to describe the observed meson / baryon spectra [*Phys. Lett. 8* (1964) 214]
- ★ Prediction of the c quark to explain the unexpectly low observed branching ratio of the decay $K_L \rightarrow \mu^+ \mu^-$ [*Phys. Rev. D 2* (1970) 1285]
- ★ First evidence of CP violation in the K⁰ decay (NA31@ CERN) [Phys. Lett. B 206 (1988) 169]
- ★ Measurement of CP violation in the K⁰ decay (NA48@CERN, KTeV@FNAL) $\mathcal{R}e(\varepsilon'/\varepsilon) = (16.8 \pm 1.4) \times 10^{-4}$ [Phys. Lett. B 544 (2002) 97, Phys. Rev. D 83 (2010) 092001]

NA62 👌

- **×** Kaon Experiments [pre-LHC era 2000 2010]
 - × NA48 (CERN), KTeV (FNAL), KLOE (LNF), CPLEAR (CERN), E865 (BNL), ISTRA+ (Protvino)
- **×** Low energy QCD (e.g. χPT)
- ✗ Test of CPT symmetry invariance
- ✗ Precision test of the CKM unitarity
 - Most precise determination up to date of V_{us} from data on leptonic and semileptonic kaon decays [*Eur. Phys. J. C 69* (2010) 399].
 - $\bullet \quad |V_{us}| = 0.2253 \pm 0.0009$
- ✗ Test of lepton universality
- ★ High order test of SM through rare K decays

Kaon @ CERN - SPS

- '97-'01 NA48: ε'/ε
- '02 NA48/1: K_s (rare decays)
- '03-'04 NA48/2: K[±] (CP violation), semileptonic, low energy QCD
- '07-'08 NA62: Lepton universality

- × $Br(K_S \rightarrow \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3}(stat) \pm 0.8(syst)) \times 10^{-9}$ [Phys. Lett. B 576 (2003)]
- × $Br(K_S \rightarrow \pi^0 \mu^+ \mu^-) = (2.9^{+1.4}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$ [Phys. Lett. B 599 (2004)]

Low Energy Physics (NA48/2)

[[]Eur. Phys. J. C 64 (2009) 589]

- $\star \quad K^{\pm} \to \pi^{+}\pi^{-}e^{\pm}\nu \ (\mathrm{K_{e4}})$
- × $\pi\pi$ scattering length
- ★ 1.13 M, 0.6% background

Lepton Universality (NA62 '07)

(Sneutrino

- NA62 4-months run ('07) ٩
- NA48 apparatus
- Full data sample: 145'958 K_{e2} ٩
- 10% background measured using data 0

 $R_{K} = (2.488 \pm 0.007_{stat.} \pm 0.007_{syst.}) \times 10^{-5} = (2.488 \pm 0.010) \times 10^{-5}$ (χ^{2} /ndf = 47/39) [Phys. Lett. B 719 (2013) 326]

- **×** SM Flavour dynamic studied (B-factories).
- ★ Higgs like boson found (LHC)
- ★ SUSY not observed directly (LHC)

- **x** Dark matter / energy
- **x** Matter / anti-matter asymmetry
- × v mass and oscillation
- Hierarchy problem
- × ...

The $K \to \pi \nu \overline{\nu}$ decays: a theoretical clean environment

• FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

- Very clean theoretically
 - Short distance contribution dominate
 - No hadronic uncertainties
- SM predictions [Brod, Gorbahn, Stamou, Phys. Rev. D 83, 034030 (2011)] [G. Buchalla, A.J. Buras, Nucl. Phys. B 412, 106 (1994)]

 $BR(K_L \rightarrow \pi^0 \nu \nu) = (2.43 \pm 0.39 \pm 0.06) \times 10^{-11}$ BR(K⁺ $\rightarrow \pi^+ \nu \nu) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$

1° error: uncerainty from input parameters

2° error: pure theoretical uncertainty

NA62 🗛

NA62

$K \rightarrow \pi \nu \overline{\nu}$ NP Sensitivity

- Z' gauge boson mediating FCNC at tree level [A.J.Buras et al., JHEP 1302 (2013) 116]
- Little Higgs with T-parity [JHEP 0903 (2009) 108]
- Custodial Randall-Sundrum [Acta Phys. Polon. B 41 (2010) 657]
- Best probe of MSSM non-MFV (still not excluded by LHC) [JHEP 0608 (2006) 088]

Connection with Flavour Physics

- K physics alone can fully constraint the CKM unitarity triangle.
- Comparison with B physics can provide description of NP flavour dynamics

NA62 🛔

$K \rightarrow \pi \nu \overline{\nu}$ in LHC era: Experimental Requirement

BR($K \rightarrow \pi \nu \bar{\nu}$) measurement with < 10% accuracy

$K \rightarrow \pi \nu \overline{\nu}$ Experimental State of the Art

NA62

2020

Year

CÈRN

The NA62 Experiment for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- Experiment at CERN SPS, replacing the NA48 apparatus
- Goal:

NAGZ A

- 10% precision BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) in 2 years of data
- Requirements:
 - Statistics: O(100) events [BR(SM) ~ 8 x 10⁻¹¹]
 - K decays (2 years) 10¹³, Signal acceptance ~ 10%
 - Systematics: <10% precision background measurement
 - >10¹² background rejection (<20% background)
- Technique:
 - K Decay in flight

CERM

Status of NA62

- Installed (almost completely)
- First run: mid October mid December 2014
- Detector commissioning
- Data quality studies

AC	52 Sc	heme f	for $K^+ \to \pi^+ \nu \bar{\nu}$	Analysis	CERN
•	Signal (10% ac	ccetpance)	P_{K} P_{π} $\theta_{\pi K}$ P_{ν}		
•	Background		ΥP _ν	K ⁺ main decays	BR
-	K ⁺ docay modes			$K^+ \to \mu^+ \nu$	0.6355
•	Non-K decay events			$K^+ \to \pi^+ \pi^0$	0.2066
•			$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559	
•	Background suppression factors O(10 ¹²)		$K^+ \to \pi^+ \pi^0 \pi^0$	0.0176	
				$K^+ \to \pi^0 e^+ \nu$	0.0507
	Kinematics	$O(10^4-10^5)$		$K^+ \rightarrow \pi^0 \mu^+ \nu$	0.0335
	Particle ID	O(10 ⁷)		$K^+ \rightarrow \pi^+ \pi^- a^+ \mu$	1.257×10^{-5}
	γ detection	$O(10^8)$		$\Lambda \rightarrow \eta \eta e V$	4.237 × 10

- Measurement of background suppression factors from data
- Signal acceptance determination and BR measurement

 $O(10^8 - 10^9)$

Non K decays

Kinematics and Background Suppression

• Kinematic variable: $m_{miss}^2 = (P_K - P_{\pi^+})^2$

- Measurement of the K track $[\sigma(P_K)/P_K \le 0.2\%, \sigma(\theta_K) \le 20 \, \mu m]$
- Mesurement of the π^+ track $[\sigma(P_{\pi})/P_{\pi} \le 1\%, \sigma(\theta_{\pi}) \le 60 \ \mu m$ in 10-50 GeV region]
- Analysis requirement: $P_{\pi^+} < 35 \text{ GeV/c}$ (separation from $K^+ \rightarrow \mu^+ \nu$).
- Expected performances: O(10⁴) suppression of the main background modes.
- Limitations to backgroud suppression: resolution tails, πK matching

NA62 👌

CERN

Tracking Systems

- × Kaon tracker
- ✗ 3 Si pixel stations on the beam
- × Rate: 750 MHz
- × $X/X_0 < 0.5\%$ / station, $\sigma(t) \sim 200 \ ps$
- ★ Partially commissioned in 2014

Pion tracker

- Straw spectrometer in vacuum
- × Rate 10 MHz
- \times X/X₀ < 0.5% / chamber
- ★ Fully commissioned in 2014

Photon Detectors

calorimeters (large angles)

NA6Z

calorimeter (forward)

calorimeter (small angles)

10³ Cluster energy 10² 2014 1 data 0 10 20 30 40 50 60 70 80 90 100 Energies (GeV)

- ✗ Forward region
- ★ Calorimeter at liquid Kripton (LKr, NA48)
- ★ High energy, time, position resolution
- **★** < 10⁻⁵ efficiency for γ > 10 GeV (measured)
- × New electronics commissioned in 2014

- $\pi/\mu/e$ separation
- Cerenkov and calorimetry technique emploied
- Analysis: $P_{\pi^+} < 35$ GeV/c to get the best μ/π separation using the Cerenkov technique
- Expected μ/π separation O(10⁷)

Particle ID Detectors

RICH Vessel

RICH Mirrors

- RICH detector: 17 m, Ne @ 1 atm
- Cerenkov angle resolution $\leq 100 \ \mu rad$
- Time resolution < 80 ps
- μ/π separation >10² measured on a prototype
- Redundancy in kinematic reconstruction
- Fully commissioned in 2014

RICH rings

NA6Z

Giuseppe Ruggiero

Non Kaon decay Background

- Identify Kaon: KTAG
- Detect low energy products: guard ring detector
- Reconstruct the origin of the leading particle: tracking systems

NA62 A

Beam K / π separation

- KTAG Cerenkov counter
- Radiator N₂

NA62

- New external optics, PMs and readout
- < 80 ps time resolution
- 95% efficiency in K ID (> 99.9% purity)
- 50 MHz particle rate
- Fully commissioned in 2014

CERN

Run 2014 (November - December)

• Run conditions:

NA62

- Continuous spill of protons on target for 6 s (every 20 s)
- 5% of the nominal beam intensity in 2014
- Trigger built from the signals in the downstream detectors (20 KHz)
- Data size: 20 Kbyte / event (~100 K events per spill).
- (last) 2 weeks of run dedicated to physics studies.

CERM

CAVEAT: Every plot is very preliminar

- Fresh data with complex detectors running for the first time
- No kaon tracker
- No detector calibrations / alignment
- First and un-complete versions of detector reconstructions
- Analysis from data at raw level
- 0.2% of the total statistics studied
- o ...

NA6Z

CÉRN

- Events with only 1 track in the spectrometer reconstructed (40 ns time window)
- 10² muon rejection at trigger level.

NA62

CERM

Apply KTAG for K ID

NA62

CERN

• Matching between tracks and RICH rings to study the particle content

NA62

CÈRN

• Use track origin to suppress the background from kaon interactions

NA62

CERN

- Kinematic variable: $m_{miss}^2 = (P_K P_{\pi^+})^2$
- Nominal K momentum and direction assumed (No Kaon tracker)

NA62 A

• Joining kinematics and particle ID

NA62

CÈRN

• NA62 is ready to collect and study $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

NA62 👌

CÉRN

Further NA62 K Physics Program

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	—	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+ u$	χPT	-	O(10 ⁵)

K rare decays: a look forward

Conclusions

CERN

- ★ Kaons are partner of LHC in the quest for physics beyond the Standard Model.
- **×** CERN has a bright tradition in Kaon Physics
- ★ NA62 is officially scheduled at CERN to run up to 2018 (at least).
- ★ NA62 is working and ready to do physics.

Next run: 1st July – 15th November 2015