

Recent Soft QCD results from ATLAS

J. Robinson 1

¹University of Manchester

November 12th 2014, University of Liverpool Seminar

- 2 Theoretical modelling
- ATLAS Soft QCD results
- Underlying event
- 5 Total cross section
- **6** Transverse polarization of Λ and $\overline{\Lambda}$ hyperons

ATLAS and the LHC

THE LARGE HADRON COLLIDER

The University of Manchester

- 27 km circumference proton-proton collider
- Aim to test the Standard Model at energies up to 14 TeV
- Data collected at a variety of \sqrt{s}

900 GeV, 2.36 TeV, 2.76 TeV, 7 TeV, 8 TeV

MANCHESTER 1824 The University of Manchester

THE ATLAS DETECTOR

- General purpose experiment consisting of multiple detector regions
- Inner detector reconstructs charged particle tracks in 2 T magnetic field
- Calorimeters measure energies of EM and hadronic particles
- Dedicated spectrometers for muon measurement

THE ATLAS DETECTOR

B. Wynne

Theoretical modelling

LHC CROSS SECTIONS

The University of Manchester

MANCHESTER

1824

Total pp cross section much larger than cross section for "interesting" physics

 bulk of collisions are soft (low p_T) QCD processes

LHC has many pp interactions per bunch crossing

- signal events overlaid with particles from other interactions
- almost every observable influenced by non-perturbative QCD effects
 → PDF effects, multi parton interactions (MPI), and hadronisation
- good modelling of non-perturbative QCD is necessary for precision physics and searches

Proton-(anti)proton cross sections

MANCHESTER

- Non-perturbative QCD effects are parametrised using empirical models
- Historically, Monte Carlo generators factorised events into independent pieces

- Matrix Element: exact theoretical calculation up to stated accuracy (e.g. LO or NLO).
- Parton Shower: QCD radiation matched to the matrix element (bremsstrahlung).
- Hadronisation: Phenomenological models describing non-perturbative effects.

Interplay between ME and PS complicated at higher orders (eg. CKKW/MLM merging)

COMPONENTS OF THE TOTAL CROSS SECTION

- The majority of events at the LHC are non-diffractive inelastic events
- Another important category is elastic scattering: $pp \rightarrow pp$
- The remaining diffractive events are usually divided into
 - **u** single-diffractive dissociation: $pp \rightarrow Xp$ **2** double-diffractive dissocation: $pp \rightarrow XY$ **5** central-diffractive: $pp \rightarrow pXp$
 - \rightarrow Often categorised by the mass of the diffractive system(s), M_X or $\xi_X=M_X^2/s$

Non-diffractive

ATLAS Soft QCD results

SOFT QCD RESULTS

The University of Manchester

ATLAS has made a lot of measurements in the fields of Soft QCD and Diffraction

- Charged-particle multiplicities
- Underlying event characteristics
- Inelastic *pp* cross section
- Hadron production cross sections
- Event-level correlations between particles
- Event shape variables
- Pseudo-rapidity dependence of total transverse energy
- ...many more

Too much to discuss here, so I will just mention some of the most recent results:

NEW Underlying event in jet eventsEPJC 74 (2014) 2965NEW Total elastic pp cross sectionNPB (2014) 486-548NEW Underlying event in inclusive Z-boson productionsubmitted to EPJCNEW Transverse polarisation of Λ and $\overline{\Lambda}$ hyperonspreliminary

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults#Soft_QCD

LUMINOSITY AND PILEUP EVOLUTION

The University of Manchester

MANCHESTER

1824

- Increasing luminosity comes from additional interactions (pileup) in each bunch crossing
- Typically, soft QCD measurements want to study events with single interactions \rightarrow restricted to special runs with low \mathcal{L}_{inst}
- Some analyses use full dataset, applying sophisticated subtraction techniques

MEASUREMENT PHILOSOPHY

- Measurements should be corrected for detector inefficiencies and resolutions (unfolding)
 - $\, \bullet \,$ determine p_T spectrum of charged particles, not of ATLAS tracks
- 2 Main results cannot be model-dependent extrapolations into regions not "seen" by ATLAS (low p_T or far-forward particles)
 - we measure what we see, not what the Monte Carlo tells us we should have seen!
- **I** Event selection theoretically well defined and reproducible
 - $\bullet~$ for example, $\geq x$ charged particles with $p_{\rm T} > y$ and $|\eta| < z$

Underlying event

CHALLENGES IN DESCRIBING DATA

The University of Manchester

Underlying event: any hadronic activity not associated with hard scattering process

- Unavoidable background to collision events
- Not well-predicted as non-perturbative effects dominate
- Need to ensure that measurements are not dependent on details of model used

Not possible to unambiguously assign particles to the hard scatter or UE

Typically modelled with

- Multiple parton interactions
- Initial/final-state radiation
- Colour reconnection with beam remnants

Overlaid collisions within the same bunch crossing also complicate measurements

UNDERLYING EVENT TOPOLOGY

- Identify a "hard scatter" using a reference object (eg. jet or vector boson)
- Three azimuthal regions defined with respect to the leading object

- Toward and transverse regions are sensitive to the underlying event
- Away region has larger contributions from high $p_{\rm T}$ recoil, which is modelled by perturbative QCD
- Transverse region is further divided into trans-max and trans-min depending on the amount of activity

UNDERLYING EVENT OBSERVABLES

The University of Manchester

Interested in properties of soft charged and neutral particles

Densities and averages

- Average p_{T} of charged particles: $\langle p_{\mathrm{T}} \rangle$
- Density of charged particles: $N_{ch}/\delta\eta\delta\phi$
- p_{T} density of charged particles: $\sum p_{\mathrm{T}}/\delta\eta\delta\phi$
- $E_{\rm T}$ density of all particles: $\sum E_{\rm T}/\delta\eta\delta\phi$

Particle spectra

- Charged particle $p_{\rm T}$ spectrum
- Charged particle multiplicity spectrum

MANCHESTER

1824

Events containing a reference object are selected using the following criteria:

Requirement	jets	Z boson	
p_{T}	> 20 GeV	> 20 GeV	
rapidity	$ \eta $ <2.8	$ \eta $ <2.4	
luminosity	37 pb ⁻¹	4.6 fb ^{−1}	
other	anti- k_t R=0.4	$66 < m_{ll} < 116$	

...before event activity is detemined using

- Charged particles identified by tracks with
 - $p_{\mathrm{T}} >$ 0.5 GeV
 - $|\eta| <$ 2.5

• Particles identified with calorimeter clusters (only in the jet measurement)

- Charged particles: p > 0.5 GeV
- Neutral particles: p > 0.2 GeV
- |η| < 4.8

- $\bullet~$ Pileup is important in 4.6 fb $^{-1}$ dataset used in the $\it Z\mbox{-}boson$ UE measurement
- Impact reduced by requiring tracks to be associated to the primary vertex

 $|d_0| <$ 1.5 mm and $|z_0| \sin \theta <$ 1.5 mm

- Residual contribution estimated and subtracted with a data-driven technique
- Tracks associated to points at distance >2 cm from primary vertex used to model pileup contribution
- Pileup correction checked in subsamples with different average number of interactions → consistency check

UNDERLYING EVENT IN JET EVENTS

The University of Manchester

Inclusive jet selection

- Trans-min region is flat → UE activity can be modelled as constant at hard enough scales
- $\bullet~$ Trans-max region shows increasing activity with jet $p_T \rightarrow$ large contribution from pQCD
- Could indicate colour connection to leading jet

- In exclusive dijet selection both trans-max and trans-min regions are flat
- Veto on additional hard activity gives less sensitivity to perturbative QCD effects

Exclusive dijet selection

UNDERLYING EVENT IN JET EVENTS

EPJC 74 (2014) 2965

The University of Manchester

MANCHESTER

1824

- Similar distributions for $\sum E_{T}$ measured with calorimeter clusters
- Different Monte Carlo models and tunes compared
- Best agreement given by PYTHIA 6 with Perugia 2011 tune

arXiv:1409.3433

Underlying event in Z events

MANCHESTER

- Z → ll allows measurement of UE in the toward, transverse and away regions
- $\bullet~{\rm Low}~p_{\rm T}$ region less sensitive to pQCD $\rightarrow~{\rm useful}$ for non-perturbative model tuning
- For high $Z p_T$, away region dominated by Z+ 1 jet balance
- Toward and transverse regions are sensitive to higher *N_{jets}*

Underlying event

J.E.M. Robinson

UNIVERSALITY OF MPI MODEL

- Underlying event measurements have been made using track, jet and Z-boson references
- Comparison lets us test assumption that multi-parton interactions (MPI) are universal
- Good agreement for jet and Z-boson: especially for trans-min (most sensitive to MPI)
- Reasonable agreement with track measurement
- Qualitative check of universality of MPI model in different hard processes

Particle $p_{\rm T}$ and multiplicity

EPJC 74 (2014) 2965 arXiv:1409.3433

- Double differential charged particle multiplicity and $p_{\rm T}$ spectra
- Provide further discrimination between Monte Carlo models

Particle $p_{\rm T}$ and multiplicity

EPJC 74 (2014) 2965 arXiv:1409.3433

- Strong dependence on reference object p_T
- Very challenging for current soft QCD models to describe these observables

UNDERLYING EVENT SUMMARY

- NEW measurements of underlying event observables in jet and Z-boson events
- Large variety of multiplicity and energy density distributions measured
- $\bullet~$ Measurements sensitive to non-perturbative QCD parameters and models \rightarrow can be used to tune Monte Carlo generators
- Underlying event shown to be sensitive to details of MPI modelling \rightarrow parameters related to colour-reconnection, α_s and the IR cut-off
- Underlying event measurements in Run II will provide further test of \sqrt{s} dependence

Total cross section

ELASTIC CROSS SECTION MEASUREMENT

NPB (2014) 486-548

The University of Manchester

 Total cross section not calculable in perturbative QCD; can be measured using the optical theorem

 $\sigma_{tot} = 4\pi\,{
m Im}\left[f_{el}\,(t o 0)
ight]$

where f_{el} is elastic scattering amplitude extrapolated to t = 0

• Elastic cross section parametrised in terms of momentum transfer

$$t = -2p^2 \left(1 - \cos \theta\right) \simeq -p^2 \theta^2$$

• Previously done by UA4 Collaboration

UA4, PLB 171 (1986), 142

EXPERIMENTAL SETUP

The University of Manchester

MANCHESTER

1824

- Use specialised ALFA (Absolute Luminosity For ATLAS) detector
- 4 trackers at 240 m from ATLAS IP (8 "roman pots")
- Can detect very small angle proton scatters

ELASTIC EVENT SELECTION

The University of Manchester

MANCHESTER

1824

- Dedicated ALFA trigger for elastic events
- Data quality requirements
- Geometrical acceptance cuts
- Back-to-back requirement together with cut on similar background topologies

Correlation between y on A and C sides

Correlation between $x \, {\rm and} \, \theta_x$ on A side

- Event distribution after data quality cuts but before acceptance and background cuts
- Elastic events are inside red areas

Total cross section

J.E.M. Robinson

DETECTOR EFFICIENCIES

Main reconstruction problem: one detector may not fire

Inefficiency mainly due to shower development in the outer detectors

Data-driven correction:

$$\epsilon^{reco} = \frac{N_{4/4}}{N_{4/4} + N_{3/4} + N_{2/4} + N_{1/4} + N_{0/4}}$$

Efficiency: 89.8 ± 0.6% (Arm1) and 88.0 ± 0.9% (Arm2)

Trigger, DAQ and alignment inefficiencies measured and found to be negligible

DETECTOR ACCEPTANCE

MANCHESTER 1824 The University of Manchester

• Accurate beam pipe geometry crucially important in determining vertical cuts

Acceptance determined from Monte Carlo simulation used to correct raw spectra

NON-ELASTIC BACKGROUNDS

- Irreducible background in the elastic peak from beam halo
- Can be estimated using anti-golden events
 - \rightarrow flip the vertical co-ordinate on one side to get a measurement of t
- Background estimated to be $\sim 0.50 \pm 0.25\%$

MANCHESTER

1824

Measured scattering angle θ in detector different from that at interaction point (IP)

$$\begin{pmatrix} x_{det} \\ \theta_{x_{det}} \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} x_{IP}^* \\ \theta_{x_{IP}}^* \end{pmatrix}$$

- Elements of transport matrix calculable from optical function β
- Data used to cross-check matrix elements

$$y = \theta_y^* M_{12} \to \frac{y_{237m}}{y_{241m}} = \frac{M_{12}^{237m}}{M_{12}^{241m}}$$

- Reasonable agreement mostly inside 1σ
- Final result uses both sides (subtraction method):

$$\theta_x^* = \frac{x_A - x_C}{M_{12,A} + M_{12,C}}$$

UNFOLDING DETECTOR EFFECTS

The University of Manchester

- t-spectrum affected by detector resolution and beam smearing effects
 - \rightarrow divergence, angular smearing and vertex position
- $\bullet\,$ Reduces 'purity' (fraction of events generated in same bin as reconstructed in) to ${\sim}60\%$
- Detector-induced event migration in t-spectrum corrected using an unfolding procedure

• Clear indication of superiority of subtraction method over local angle

Extracting σ_{tot} and B

The University of Manchester

 $t = \left[(\theta_x^*)^2 + (\theta_y^*)^2 \right] p^2$ using nominal beam momentum, p = 3.5 TeV

- Fit data with all systematic and statistical uncertainties¹
- Largest uncertainties: luminosity and beam energy.
- Good fit ($\chi^2/N_{dof} = 7.4/16$) over range
- 0.01: as close to 0 as possible while keeping acceptance > 10%
- 0.1: limit fit to region where exponential description is valid

$$\sigma_{tot} = 95.4 \pm 1.4 \text{ mb}$$

$$B = 19.7 \pm 0.3 \text{ GeV}^{-2}$$

$$Fit \text{ of } \sigma_{tot} = 4\pi\alpha^2 (hc)^2 - \sigma_{tot} \frac{\alpha G^2(t)}{|t|^2} [\sin(\alpha\phi(t)) + \rho\cos(\alpha\phi(t))] e^{-B|t|/2} + \sigma_{tot}^2 \frac{1+\rho^2}{16\pi(hc)^2} e^{-B|t|}$$

Elastic cross section from the integrated fit function:

$$\sigma_{el} = \frac{\sigma_{tot}}{B} \frac{1 + \rho^2}{16\pi(\hbar c)^2} \quad \rightarrow \quad \sigma_{el} = \mathbf{24.0} \pm \mathbf{0.6} \text{ mb}$$

Optical point:

$$\left. \frac{d\sigma}{dt} \right|_{t \to 0} = 474 \pm 13 \ \mathrm{mb} \, \mathrm{GeV}^{-2}$$

Inelastic cross section:

$$\sigma_{in} = \sigma_{tot} - \sigma_{el} \rightarrow \sigma_{in} = 71.3 \pm 0.9 \text{ mb}$$

COMPARISON WITH OTHER RESULTS

The University of Manchester

Total cross section: σ_{tot}

- ATLAS: $95.4 \pm 1.4 \text{ mb}$
- TOTEM: $98.6 \pm 2.2 \text{ mb}$

Nuclear slope: B

• ATLAS: $19.7 \pm 0.3 \text{ GeV}^{-2}$

• TOTEM:
$$19.9 \pm 0.3 \text{ GeV}^{-2}$$

MANCHESTER

1824

- More precise than previous direct ATLAS measurement
- Due to large theoretical uncertainties in extrapolation to full phase-space

- NEW ATLAS measurements of pp cross sections and nuclear slope at $\sqrt{s} = 7$ TeV
- Measurements of σ_{tot} , σ_{el} and σ_{in}
- Extracted from elastic scattering measurements
- More precise than previous direct measurement by ATLAS
- In good agreement with previous LHC results from TOTEM (and ALICE)

Transverse polarization of Λ and $\bar{\Lambda}$ hyperons

Transverse polarization of Λ and $ar{\Lambda}$ hyperons

The University of Manchester

Polarisation

- Λ hyperon: spin $\frac{1}{2}$ particle
- Polarisation, P, defined as:

 $P = \frac{N_{+\frac{1}{2}} - N_{-\frac{1}{2}}}{N_{+\frac{1}{2}} + N_{-\frac{1}{2}}}$

- $\Lambda \to p \pi^- \; {\rm and} \; \bar{\Lambda} \to \bar{p} \pi^+ \; {\rm decays}$
 - Angular distribution given by:

$$w(\cos \theta^*) = rac{1}{2} \left(1 + \alpha P \cos \theta^* \right)$$

where $\alpha = 0.642 \pm 0.013$ is the known parity-violating decay asymmetry (world average)

- polarization measured in direction normal to production plane: $\vec{n} = \hat{p}_{beam} \times \vec{p}$
- as function of p_{T} and $x_F=p_z/p_{beam}$
- measured for $x_F < 0.0025$

No theoretically motivated model exists to date

Transverse polarization of Λ and $\overline{\Lambda}$ hyperons

MANCHESTER

- Data from the beginning of 2010: $\mathcal{L}_{int} = 760 \ \mu b^{-1}$
- Trigger selection: at least one hit in MBTS (at least one reconstructed collision vertex)
- $\bullet~$ Fiducial volume: 0.8 $< p_{\rm T} <$ 15 GeV, $|\eta| <$ 2.5, and 5 $\times 10^{-5} < x_F <$ 0.01
- Accept all long-lived two-prong decay candidates

Background suppression

- Decay vertex fit probability > 0.05
- Transverse decay distance significance: $L_{xy}/\sigma_{L_{xy}} > 15$
- Combinatorial background: requirements on impact parameter and decay angle
- Physics background: invariant mass veto for $K^0_S o \pi^+\pi^-$ and $\gamma o e^+e^-$
- Mass window: 1100 1135 MeV

Accepted ~ 420000 $\Lambda \rightarrow p\pi^-$ and ~ 380000 $\bar{\Lambda} \rightarrow \bar{p}\pi^+$ candidates

SIGNAL EXTRACTION

The University of Manchester

MANCHESTER

1824

- Divide invariant mass range into signal region and sidebands
- $\bullet~$ Complicated multi-parameter fit to Λ candidate distribution
- Allows extraction of signal fractions, f^{sig}_i
- Performed separately in signal region and sidebands

METHOD OF MOMENTS

The University of Manchester

Reconstructed decay angle distribution

 $w(t) \propto \epsilon(t) \left[(1 + \alpha P t)
ight] \otimes R(t', t)$

where t' and t are true and reconstructed decay angles ($\cos \theta^*$), $\epsilon(t)$ is the efficiency function and R(t', t) the resolution function

Method of moments

• The expectation value (first moment) of w(t) is linear in P:

 $E(w|P = p) \equiv E(p) = C_0 + C_1 p = E(0) + [E(1) - E(0)]p$

• E(0) and E(1) estimated from Monte Carlo samples with polarisation set to 0 and 1

POLARISATION OF BACKGROUND CONTRIBUTION

The University of Manchester

However, background events have their own polarisation, so:

 $E_{i}^{exp}\left(P, E_{bkg}
ight) = f_{i}^{sig}\left[E_{i}^{MC}(0) + \left[E_{i}^{MC}(1) - E_{i}^{MC}(0)
ight]P
ight] + (1 - f_{i}^{sig})E_{bkg}$

• Simultaneous fit in signal and sideband regions allows extraction of *P* and *E*_{bkg}

$$\chi^{2}(P, E_{bkg}) = \sum_{i=1}^{3} \frac{\left[E_{i} - E_{i}^{exp}\left(P, E_{bkg}\right)\right]^{2}}{\sigma_{E_{i}}^{2}}$$

- Moments calculated separately in the signal region and sidebands
- Assume E_{bkg} is independent of mass
- Signal fractions are already determined so...

• Measurement in bins of x_F and p_T

- Polarization < 2% in all bins
- Polarization in fiducial phase space consistent with zero in all bins

Transverse polarization of Λ and $\bar{\Lambda}$ hyperons

 $P(\Lambda) = -0.010 \pm 0.005(stat) \pm 0.004(syst)$

J.E.M. Robinson

 $P(\bar{\Lambda}) = 0.002 \pm 0.006(stat) \pm 0.004(syst)$

COMPARISON TO PREVIOUS RESULTS

- ATLAS covers different kinematic phase space than previous experiments → direct comparison of results non-trivial
- No theoretically motivated prediction, only empirical models

- ATLAS: $\langle p_{\mathrm{T}}
 angle \sim$ 1.8 2.1 GeV and \sqrt{s} = 7 TeV
- HERA-B and E799: $\langle p_{\rm T}
 angle \sim$ 0.67 2.2 GeV and $\sqrt{s} \sim$ 40 GeV
- Some energy dependence could be introduced
 - \rightarrow about half the Λ produced in ATLAS come from decays
- $\bullet\,$ Dilutes polarisation \to expect measurement to be same or smaller than extrapolation \to satisfied here

- NEW ATLAS measurement of Λ hyperon polarisations
- $\bullet\,$ Previous (mostly fixed-target) experiments measured polarisations up to $P\sim 30\%$
- Theoretical expectation:
 - Expected that P_{Λ} increases with $p_{\rm T}$ (up to saturation point \sim 1 GeV)
 - Expected that P_Λ decreases with x_F
- All previous measurements showed $P_{\overline{\Lambda}}$ consistent with zero
 - \rightarrow In agreement with measurement here

Conclusions

CONCLUSIONS

The University of Manchester

Underlying event

- Important test of non-perturbative QCD modelling
- Useful for further Monte Carlo tuning
- Demonstration of universality of MPI
- Run II measurements will help test \sqrt{s} dependence

pp cross sections

- Inelastic, elastic and total *pp* cross sections measured
- First measurement to use ALFA detector
- More precise than previous direct inelastic cross section measurement

Λ polarisation

- Λ polarisation found to be consistent with zero
 - ightarrow expected in x_F range under consideration
- $\bar{\Lambda}$ polarisation also found to be consistent with zero
 - \rightarrow in agreement with *previous measurements*

BACKUP

UNDERLYING EVENT IN JET EVENTS SYSTEMATICS

- Jet reconstruction
- Track reconsttruction efficiency
- Calorimeter reconstruction
- Background
- Unfolding

Quantity	Inclusive jets			Exclusive dijets			
All observables	Pile-up and merged 1–3%	vertices		Pile-up and merged 1–5%	vertices		
Charged tracks $\sum P_T$ N_{ch} mean p_T	Unfolding 3% 1–2% 1%	Efficiency 1–7% 3–4% 0–4%		Unfolding 3–13% 3–22% 1–9%	Efficiency 2–7% 3–7% 1%		
Calo clusters $\sum E_{\rm T}, \eta < 4.8$ $\sum E_{\rm T}, \eta < 2.5$	Unfolding 2–3% 3–5%	Efficiency 4–6% 4–6%		Unfolding 5–21% 1–21%	Efficiency 4–9% 4–7%		
Jets P ^{lead}	Energy resolution 0.3–1%	JES 0.3-4%	Efficiency 0.1–2%	Energy resolution 0.4–3%	JES 1–3%	Efficiency 0.3–3%	

Underlying event in Z-boson events systematics

- Lepton identication and scale
- Track reconsttruction efficiency
- Pile-up
- Background
- Unfolding

Observable	Correlation	$N_{ m ch}$ vs $p_{ m T}^{ m Z}$	$\sum p_{\mathrm{T}} \mathrm{vs} p_{\mathrm{T}}^{\mathrm{Z}}$	Mean $p_{\rm T}$ vs $p_{\rm T}^{\rm Z}$	Mean $p_{\rm T}$ vs $N_{\rm ch}$
Lepton selection	No	0.5 - 1.0	0.1 - 1.0	< 0.5	0.1 - 2.5
Track reconstruction	Yes	1.0 - 2.0	0.5 - 2.0	< 0.5	< 0.5
Impact parameter requirement	Yes	0.5 - 1.0	1.0 - 2.0	0.1 - 2.0	< 0.5
Pile-up removal	Yes	0.5 - 2.0	0.5 - 2.0	< 0.2	0.2 - 0.5
Background correction	No	0.5 - 2.0	0.5 - 2.0	< 0.5	< 0.5
Unfolding	No	0.5 - 3.0	0.5 - 3.0	< 0.5	0.2 - 2.0
Electron isolation	No	0.1 - 1.0	0.5 - 2.0	0.1 - 1.5	< 1.0
Combined systematic uncertainty		1.0 - 3.0	1.0 - 4.0	< 1.0	1.0 - 3.5

MANCHESTER

- High β^* runs for ATLAS, in parallel with TOTEM around CMS
- In October 2011, ATLAS/ALFA had dedicated beam time:
 - Intermediate optics with β^* = 90 m
 - Phase advance of $\beta_y = 90^\circ$ (parallel-to-point focusing in vertical)
 - Phase advance of $\beta_x \simeq 180^\circ$
 - Small emittance (2-3 µm.mrad)
 - Small divergence (\sim 3 $\mu rad)$
 - One pair of colliding bunches with low intensity ($\simeq 7^{10}$ protons)
 - $\mathcal{L} \simeq 10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1} (\mu \simeq 0.035)$
- 800k good elastic events used for the analysis of σ_{tot} and the nuclear slope, B

ALFA LUMINOSITY

- Luminosity estimated by ATLAS: $\mathcal{L} = 78.7 \pm 1.9 \ \mu b$
- Calibration transfer uncertainty from spread of measurements
- Uncertainty on the absolute luminosity scale is 1.53%
- Beam backgrounds 0.2%

- Individual contributions added in quadrature (before rounding)
- Total systematic uncertainty smaller than statistical one

Systematic uncertainty	Λ	$\bar{\Lambda}$
MC statistics	0.003	0.003
Mass range	0.003	0.003
Background	0.001	0.001
Kinematic weighting	0.001	0.001
Other contributions	$< 5 imes 10^{-4}$	$< 5 imes 10^{-4}$
Total	0.004	0.004

- Many possible parametrisations
- One popular one is that presented by B. Lundberg in PRD 40 (1989) 3557
- Assumes energy independence and neglects detector effects

$$\left(P = \left(-0.268 x_F - 0.338 x_F^3
ight) imes \left(1 - e^{-4.5 p_{
m T}^2}
ight)
ight)$$

THE ATLAS DETECTOR: CALORIMETERS

The University of Manchester

EM calorimeters

- Barrel $|\eta| < 1.475$
- End-cap

 $1.375 \leq |\eta| < 3.2$

Hadronic calorimeters

- Barrel $|\eta| < 1.0$
- Extended barrel
 - $0.8 \leq |\eta| < 1.7$
- End-cap $1.5 \leq |\eta| < 3.2$
- Forward calorimeters
 - LAr $3.2 \leq |\eta| < 4.9$

BACKUP