Recent Soft QCD results from ATLAS

J. Robinson ${ }^{1}$
${ }^{1}$ University of Manchester

November 12th 2014, University of Liverpool Seminar

MANCHESTER 1824

The University of Manchester
(1) ATLAS and the LHC
(2) Theoretical modelling
(3) ATLAS Soft QCD results

4 Underlying event
(5) Total cross section
(6) Transverse polarization of Λ and $\bar{\Lambda}$ hyperons
(7) Conclusions

MANCHESTER 1824

The University of Manchester

ATLAS and the LHC

MANCHESTER 1824

The University of Manchester

- 27 km circumference proton-proton collider
- Aim to test the Standard Model at energies up to 14 TeV
- Data collected at a variety of \sqrt{s}
$900 \mathrm{GeV}, \quad 2.36 \mathrm{TeV}, \quad 2.76 \mathrm{TeV}, \quad 7 \mathrm{TeV}, \quad 8 \mathrm{TeV}$

MANCHESTER 1824

THE CERN ACCELERATOR COMPLEX

The University of Manchester

MANCHESTER 1824

The University of Manchester

- General purpose experiment consisting of multiple detector regions
- Inner detector reconstructs charged particle tracks in 2 T magnetic field
- Calorimeters measure energies of EM and hadronic particles
- Dedicated spectrometers for muon measurement

MANCHESTER 1824

The University of Manchester
The ATLAS Detector
ter

Muon Spectrometer

- ATLAS uses a right-handed co-ordinate system
- Inner tracking detectors: $|\eta|<2.5$
- EM and hadronic calorimeters: $|\eta|<4.9$
- Muon spectrometers: $|\eta|<2.7$

B. Wynne

The University of Manchester

Theoretical modelling

MANCHESTER 1824

Total $p p$ cross section much larger than cross section for "interesting" physics

- bulk of collisions are soft (low p_{T}) QCD processes
LHC has many $p p$ interactions per bunch crossing
- signal events overlaid with particles from other interactions
- almost every observable influenced by non-perturbative QCD effects
\rightarrow PDF effects, multi parton interactions (MPI), and hadronisation
- good modelling of non-perturbative QCD is necessary for precision physics and searches

Proton-(anti)proton cross sections

- Non-perturbative QCD effects are parametrised using empirical models
- Historically, Monte Carlo generators factorised events into independent pieces

- Matrix Element: exact theoretical calculation up to stated accuracy (e.g. LO or NLO).
- Parton Shower: QCD radiation matched to the matrix element (bremsstrahlung).
- Hadronisation: Phenomenological models describing non-perturbative effects.

MANCHESTER 1824

- The majority of events at the LHC are non-diffractive inelastic events
- Another important category is elastic scattering: $p p \rightarrow p p$
- The remaining diffractive events are usually divided into

11 single-diffractive dissociation: $p p \rightarrow X p$
$\boxed{2}$ double-diffractive dissocation: $p p \rightarrow X Y$
3 central-diffractive: $p p \rightarrow p X p$
\rightarrow Often categorised by the mass of the diffractive system(s), M_{X} or $\xi_{X}=M_{X}^{2} / s$

Non-diffractive

The University of Manchester

ATLAS Soft QCD results

ATLAS has made a lot of measurements in the fields of Soft QCD and Diffraction

- Charged-particle multiplicities
- Underlying event characteristics
- Inelastic $p p$ cross section
- Hadron production cross sections
- Event-level correlations between particles
- Event shape variables
- Pseudo-rapidity dependence of total transverse energy
- ...many more

Too much to discuss here, so I will just mention some of the most recent results:

NEW Underlying event in jet events
NEW Total elastic $p p$ cross section
NEW Underlying event in inclusive Z-boson production
NEW Transverse polarisation of Λ and $\bar{\Lambda}$ hyperons

EPJC 74 (2014) 2965
NPB (2014) 486-548
submitted to EPJC
preliminary

[^0]
MANCHESTER 1824

The University of Manchester

Luminosity over time

Number of interactions over time

- Increasing luminosity comes from additional interactions (pileup) in each bunch crossing
- Typically, soft QCD measurements want to study events with single interactions
\rightarrow restricted to special runs with low $\mathcal{L}_{\text {inst }}$
- Some analyses use full dataset, applying sophisticated subtraction techniques

1 Measurements should be corrected for detector inefficiencies and resolutions (unfolding)

- determine p_{T} spectrum of charged particles, not of ATLAS tracks

2. Main results cannot be model-dependent extrapolations into regions not "seen" by ATLAS (low p_{T} or far-forward particles)

- we measure what we see, not what the Monte Carlo tells us we should have seen!

3 Event selection theoretically well defined and reproducible

- for example, $\geq x$ charged particles with $p_{\mathrm{T}}>y$ and $|\eta|<z$

MANCHESTER 1824

The University of Manchester

Underlying event

MANCHESTER 1824

CHALLENGES IN DESCRIBING DATA

The University of Manchester

Underlying event: any hadronic activity not associated with hard scattering process

- Unavoidable background to collision events
- Not well-predicted as non-perturbative effects dominate
- Need to ensure that measurements are not dependent on details of model used

Not possible to unambiguously assign particles to the hard scatter or UE

Typically modelled with

- Multiple parton interactions
- Initial/final-state radiation
- Colour reconnection with beam remnants

Overlaid collisions within the same bunch crossing also complicate measurements

MANCHESTER 1824

- Identify a "hard scatter" using a reference object (eg. jet or vector boson)
- Three azimuthal regions defined with respect to the leading object

- Toward and transverse regions are sensitive to the underlying event
- Away region has larger contributions from high p_{T} recoil, which is modelled by perturbative QCD
- Transverse region is further divided into trans-max and trans-min depending on the amount of activity

MANCHESTER 1824

Interested in properties of soft charged and neutral particles

Densities and averages

- Average p_{T} of charged particles: $\left\langle p_{\mathrm{T}}\right\rangle$
- Density of charged particles: $N_{c h} / \delta \eta \delta \phi$
- p_{T} density of charged particles: $\sum p_{\mathrm{T}} / \delta \eta \delta \phi$
- E_{T} density of all particles: $\sum E_{\mathrm{T}} / \delta \eta \delta \phi$

Particle spectra

- Charged particle p_{T} spectrum
- Charged particle multiplicity spectrum

MANCHESTER 1824

Events containing a reference object are selected using the following criteria:

Requirement	jets	Z boson
p_{T}	$>20 \mathrm{GeV}$	$>20 \mathrm{GeV}$
rapidity	$\|\eta\|<2.8$	$\|\eta\|<2.4$
luminosity	$37 \mathrm{pb}^{-1}$	$4.6 \mathrm{fb}^{-1}$
other	anti- $k_{t} \mathrm{R}=0.4$	$66<m_{l l}<116$

...before event activity is detemined using

- Charged particles identified by tracks with
- $p_{\mathrm{T}}>0.5 \mathrm{GeV}$
- $|\eta|<2.5$
- Particles identified with calorimeter clusters (only in the jet measurement)
- Charged particles: $p>0.5 \mathrm{GeV}$
- Neutral particles: $p>0.2 \mathrm{GeV}$
- $|\eta|<4.8$
- Pileup is important in $4.6 \mathrm{fb}^{-1}$ dataset used in the Z-boson UE measurement
- Impact reduced by requiring tracks to be associated to the primary vertex

$$
\left|d_{0}\right|<1.5 \mathrm{~mm} \text { and }\left|z_{0}\right| \sin \theta<1.5 \mathrm{~mm}
$$

- Residual contribution estimated and subtracted with a data-driven technique
- Tracks associated to points at distance $>2 \mathrm{~cm}$ from primary vertex used to model pileup contribution
- Pileup correction checked in subsamples with different average number of interactions \rightarrow consistency check

MANCHESTER 1824

The University of Manchester

Inclusive jet selection

- Trans-min region is flat \rightarrow UE activity can be modelled as constant at hard enough scales
- Trans-max region shows increasing activity with jet $p_{\mathrm{T}} \rightarrow$ large contribution from pQCD
- Could indicate colour connection to leading jet

Exclusive dijet selection

- In exclusive dijet selection both trans-max and trans-min regions are flat
- Veto on additional hard activity gives less sensitivity to perturbative QCD effects

MANCHESTER 1824

- Similar distributions for $\sum E_{\mathrm{T}}$ measured with calorimeter clusters
- Different Monte Carlo models and tunes compared
- Best agreement given by PYTHIA 6 with Perugia 2011 tune

MANCHESTER 1824

The

- $Z \rightarrow l l$ allows measurement of UE in the toward, transverse and away regions
- Low p_{T} region less sensitive to $\mathrm{pQCD} \rightarrow$ useful for non-perturbative model tuning
- For high $Z p_{\mathrm{T}}$, away region dominated by $Z+1$ jet balance
- Toward and transverse regions are sensitive to higher $N_{j e t s}$

- Underlying event measurements have been made using track, jet and Z-boson references
- Comparison lets us test assumption that multi-parton interactions (MPI) are universal
- Good agreement for jet and Z-boson: especially for trans-min (most sensitive to MPI)
- Reasonable agreement with track measurement
- Qualitative check of universality of MPI model in different hard processes

MANCHESTER 1824

- Double differential charged particle multiplicity and p_{T} spectra
- Provide further discrimination between Monte Carlo models

- Strong dependence on reference object p_{T}
- Very challenging for current soft QCD models to describe these observables
- NEW measurements of underlying event observables in jet and Z-boson events
- Large variety of multiplicity and energy density distributions measured
- Measurements sensitive to non-perturbative QCD parameters and models
\rightarrow can be used to tune Monte Carlo generators
- Underlying event shown to be sensitive to details of MPI modelling
\rightarrow parameters related to colour-reconnection, α_{s} and the IR cut-off
- Underlying event measurements in Run II will provide further test of \sqrt{s} dependence

MANCHESTER 1824

The University of Manchester

Total cross section

- Total cross section not calculable in perturbative QCD; can be measured using the optical theorem

$$
\sigma_{t o t}=4 \pi \operatorname{Im}\left[f_{e l}(t \rightarrow 0)\right]
$$

where $f_{e l}$ is elastic scattering amplitude extrapolated to $t=0$

- Elastic cross section parametrised in terms of momentum transfer

$$
t=-2 p^{2}(1-\cos \theta) \simeq-p^{2} \theta^{2}
$$

- Previously done by UA4 Collaboration

UA4, PLB 171 (1986), 142

- Use specialised ALFA (Absolute Luminosity For ATLAS) detector
- 4 trackers at 240 m from ATLAS IP (8 "roman pots")
- Can detect very small angle proton scatters

MANCHESTER 1824

- Dedicated ALFA trigger for elastic events
- Data quality requirements
- Geometrical acceptance cuts
- Back-to-back requirement together with cut on similar background topologies

Correlation between y on A and C sides

Correlation between x and θ_{x} on A side

- Event distribution after data quality cuts but before acceptance and background cuts
- Elastic events are inside red areas

MANCHESTER 1824

- Main reconstruction problem: one detector may not fire
- Inefficiency mainly due to shower development in the outer detectors

Data-driven correction:

$$
\epsilon^{\text {reco }}=\frac{N_{4 / 4}}{N_{4 / 4}+N_{3 / 4}+N_{2 / 4}+N_{1 / 4}+N_{0 / 4}}
$$

$$
\text { Efficiency: } 89.8 \pm 0.6 \% \text { (Arm1) and } 88.0 \pm 0.9 \% \text { (Arm2) }
$$

- Trigger, DAQ and alignment inefficiencies measured and found to be negligible

MANCHESTER 1824

- Accurate beam pipe geometry crucially important in determining vertical cuts

Acceptance spectrum for both arms

Simulated hit pattern on ALFA

- Acceptance determined from Monte Carlo simulation used to correct raw spectra

MANCHESTER 1824

MANCHESTER 1824

The University of Manchester

Measured scattering angle θ in detector different from that at interaction point (IP)

$$
\binom{x_{d e t}}{\theta_{x_{d e t}}}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{x_{I P}^{*}}{\theta_{x_{I P}}^{*}}
$$

- Elements of transport matrix calculable from optical function β
- Data used to cross-check matrix elements

$$
y=\theta_{y}^{*} M_{12} \rightarrow \frac{y_{237 m}}{y_{241 m}}=\frac{M_{12}^{237 m}}{M_{12}^{241 m}}
$$

- Reasonable agreement - mostly inside 1σ
- Final result uses both sides (subtraction method):

$$
\theta_{x}^{*}=\frac{x_{A}-x_{C}}{M_{12, A}+M_{12, C}}
$$

MANCHESTER 1824

The University of Manchester

- t-spectrum affected by detector resolution and beam smearing effects \rightarrow divergence, angular smearing and vertex position
- Reduces 'purity' (fraction of events generated in same bin as reconstructed in) to ~60\%
- Detector-induced event migration in t-spectrum corrected using an unfolding procedure

- Clear indication of superiority of subtraction method over local angle

MANCHESTER 1824

$t=\left[\left(\theta_{x}^{*}\right)^{2}+\left(\theta_{y}^{*}\right)^{2}\right] p^{2}$ using nominal beam momentum, $p=3.5 \mathrm{TeV}$

- Fit data with all systematic and statistical uncertainties ${ }^{1}$
- Largest uncertainties: luminosity and beam energy.
- Good fit ($\left.\chi^{2} / N_{\text {dof }}=7.4 / 16\right)$ over range
- 0.01: as close to O as possible while keeping acceptance > 10\%
- 0.1: limit fit to region where exponential description is valid

$$
\sigma_{t o t}=95.4 \pm 1.4 \mathrm{mb}
$$

$$
B=19.7 \pm \mathbf{0 . 3} \mathrm{GeV}^{-2}
$$

Fit of $\sigma_{t o t}$ and B
${ }^{1}$ Fit: $\frac{d \sigma_{e l}}{d t}=\frac{4 \pi \alpha^{2}(\hbar c)^{2}}{|t|^{2}} G^{4}(t)-\sigma_{t o t} \frac{\alpha G^{2}(t)}{|t|}[\sin (\alpha \phi(t))+\rho \cos (\alpha \phi(t))] e^{-B|t| / 2}+\sigma_{t o t}^{2} \frac{1+\rho^{2}}{16 \pi(\hbar c)^{2}} e^{-B|t|}$

MANCHESTER 1824

Elastic cross section from the integrated fit function:

$$
\sigma_{e l}=\frac{\sigma_{t o t}}{B} \frac{1+\rho^{2}}{16 \pi(\hbar c)^{2}} \quad \rightarrow \quad \sigma_{e l}=24.0 \pm 0.6 \mathrm{mb}
$$

Optical point:

$$
\left.\frac{d \sigma}{d t}\right|_{t \rightarrow 0}=474 \pm 13 \mathrm{mb} \mathrm{GeV}^{-2}
$$

Inelastic cross section:

$$
\sigma_{i n}=\sigma_{t o t}-\sigma_{e l} \quad \rightarrow \quad \sigma_{i n}=71.3 \pm 0.9 \mathrm{mb}
$$

MANCHESTER 1824

COMPARISON WITH OTHER RESULTS

Total cross section: $\sigma_{t o t}$

- ATLAS: $95.4 \pm 1.4 \mathrm{mb}$
- TOTEM: $98.6 \pm 2.2 \mathrm{mb}$

Nuclear slope: B

- ATLAS: $19.7 \pm 0.3 \mathrm{GeV}^{-2}$
- TOTEM: $19.9 \pm 0.3 \mathrm{GeV}^{-2}$

MANCHESTER 1824

COMPARISON WITH OTHER RESULTS

- More precise than previous direct ATLAS measurement
- Due to large theoretical uncertainties in extrapolation to full phase-space

MANCHESTER 1824

- NEW ATLAS measurements of $p p$ cross sections and nuclear slope at $\sqrt{s}=7 \mathrm{TeV}$
- Measurements of $\sigma_{t o t}, \sigma_{e l}$ and $\sigma_{i n}$
- Extracted from elastic scattering measurements
- More precise than previous direct measurement by ATLAS
- In good agreement with previous LHC results from TOTEM (and ALICE)

Transverse polarization of Λ and $\bar{\Lambda}$ hyperons

Polarisation

- Λ hyperon: spin $1 / 2$ particle
- Polarisation, P, defined as:

$$
P=\frac{N_{+1 / 2}-N_{-1 / 2}}{N_{+1 / 2}+N_{-1 / 2}}
$$

$\Lambda \rightarrow p \pi^{-}$and $\bar{\Lambda} \rightarrow \bar{p} \pi^{+}$decays

- Angular distribution given by:

$$
w\left(\cos \theta^{*}\right)=\frac{1}{2}\left(1+\alpha P \cos \theta^{*}\right)
$$

where $\alpha=0.642 \pm 0.013$ is the known parity-violating decay asymmetry (world average)

- polarization measured in direction normal to production plane:

$$
\vec{n}=\hat{p}_{\text {beam }} \times \vec{p}
$$

- as function of p_{T} and $x_{F}=p_{z} / p_{\text {beam }}$
- measured for $x_{F}<0.0025$

MANCHESTER 1824

- Data from the beginning of 2010: $\mathcal{L}_{\text {int }}=760 \mu b^{-1}$
- Trigger selection: at least one hit in MBTS (at least one reconstructed collision vertex)
- Fiducial volume: $0.8<p_{\mathrm{T}}<15 \mathrm{GeV},|\eta|<2.5$, and $5 \times 10^{-5}<x_{F}<0.01$
- Accept all long-lived two-prong decay candidates

Background suppression

- Decay vertex fit probability >0.05
- Transverse decay distance significance: $L_{x y} / \sigma_{L_{x y}}>15$
- Combinatorial background: requirements on impact parameter and decay angle
- Physics background: invariant mass veto for $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$and $\gamma \rightarrow e^{+} e^{-}$
- Mass window: 1100-1135 MeV

Accepted $\sim 420000 \Lambda \rightarrow p \pi^{-}$and $\sim 380000 \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$candidates

MANCHESTER 1824

- Divide invariant mass range into signal region and sidebands
- Complicated multi-parameter fit to Λ candidate distribution
- Allows extraction of signal fractions, $f_{i}^{\text {sig }}$
- Performed separately in signal region and sidebands

Reconstructed decay angle distribution

$$
w(t) \propto \epsilon(t)[(1+\alpha P t)] \otimes R\left(t^{\prime}, t\right)
$$

where t^{\prime} and t are true and reconstructed decay angles $\left(\cos \theta^{*}\right), \epsilon(t)$ is the efficiency function and $R\left(t^{\prime}, t\right)$ the resolution function

Method of moments

- The expectation value (first moment) of $w(t)$ is linear in P :

$$
E(w \mid P=p) \equiv E(p)=C_{0}+C_{1} p=E(0)+[E(1)-E(0)] p
$$

- $E(0)$ and $E(1)$ estimated from Monte Carlo samples with polarisation set to 0 and 1

MANCHESTER 1824

The University of Manchester

However, background events have their own polarisation, so:

$$
E_{i}^{e x p}\left(P, E_{b k g}\right)=f_{i}^{s i g}\left[E_{i}^{M C}(0)+\left[E_{i}^{M C}(1)-E_{i}^{M C}(0)\right] P\right]+\left(1-f_{i}^{s i g}\right) E_{b k g}
$$

山

- Moments calculated separately in the signal region and sidebands
- Assume $E_{b k g}$ is independent of mass
- Signal fractions are already determined so...
- Simultaneous fit in signal and sideband regions allows extraction of P and $E_{b k g}$

$$
\chi^{2}\left(P, E_{b k g}\right)=\sum_{i=1}^{3} \frac{\left[E_{i}-E_{i}^{e x p}\left(P, E_{b k g}\right)\right]^{2}}{\sigma_{E_{i}}^{2}}
$$

MANCHESTER 1824

RESULTS

0

0

- Measurement in bins of x_{F} and p_{T}
- Polarization $<2 \%$ in all bins
- Polarization in fiducial phase space consistent with zero in all bins

$$
P(\Lambda)=-0.010 \pm 0.005(\text { stat }) \pm 0.004(\text { syst }) \quad P(\bar{\Lambda})=0.002 \pm 0.006(\text { stat }) \pm 0.004(\text { syst })
$$

MANCHESTER 1824

0

- ATLAS covers different kinematic phase space than previous experiments \rightarrow direct comparison of results non-trivial
- No theoretically motivated prediction, only empirical models
- ATLAS: $\left\langle p_{\mathrm{T}}\right\rangle \sim 1.8-2.1 \mathrm{GeV}$ and $\sqrt{s}=7 \mathrm{TeV}$
- HERA-B and E799: $\left\langle p_{\mathrm{T}}\right\rangle \sim 0.67-2.2 \mathrm{GeV}$ and $\sqrt{s} \sim 40 \mathrm{GeV}$
- Some energy dependence could be introduced \rightarrow about half the Λ produced in ATLAS come from decays
- Dilutes polarisation \rightarrow expect measurement to be same or smaller than extrapolation \rightarrow satisfied here

MANCHESTER 1824

- NEW ATLAS measurement of Λ hyperon polarisations
- Previous (mostly fixed-target) experiments measured polarisations up to $P \sim 30 \%$
- Theoretical expectation:
- Expected that P_{Λ} increases with p_{T} (up to saturation point $\sim 1 \mathrm{GeV}$)
- Expected that P_{Λ} decreases with x_{F}
- All previous measurements showed $P_{\bar{\Lambda}}$ consistent with zero
\rightarrow In agreement with measurement here

The University of Manchester

Conclusions

Underlying event

- Important test of non-perturbative QCD modelling
- Useful for further Monte Carlo tuning
- Demonstration of universality of MPI
- Run Il measurements will help test \sqrt{s} dependence
$p p$ cross sections
- Inelastic, elastic and total $p p$ cross sections measured
- First measurement to use ALFA detector
- More precise than previous direct inelastic cross section measurement

Λ polarisation

- Λ polarisation found to be consistent with zero
\rightarrow expected in x_{F} range under consideration
- $\bar{\Lambda}$ polarisation also found to be consistent with zero
\rightarrow in agreement with previousmeasurements

MANCHESTER 1824

The University of Manchester

BACKUP

MANCHESTER 1824

UNDERLYING EVENT IN JET EVENTS SYSTEMATICS

- Jet reconstruction
- Track reconsttruction efficiency
- Calorimeter reconstruction
- Background
- Unfolding

Quantity	Inclusive jets		Exclusive dijets		
	Pile-up and merged vertices		Pile-up and merged vertices		
All observables	$1-3 \%$		$1-5 \%$		
Charged tracks	Unfolding	Efficiency	Unfolding	Efficiency	
$\sum p_{\mathrm{T}}$	3%	$1-7 \%$	$3-13 \%$	$2-7 \%$	
N_{ch}	$1-2 \%$	$3-4 \%$	$3-22 \%$	$3-7 \%$	
mean p_{T}	1%	$0-4 \%$		$1-9 \%$	1%
Calo clusters	Unfolding	Efficiency		Unfolding	Efficiency
$\sum_{\mathrm{T}},\|\boldsymbol{\eta}\|<4.8$	$2-3 \%$	$4-6 \%$		$5-21 \%$	$4-9 \%$
$\sum E_{\mathrm{T}},\|\boldsymbol{\eta}\|<2.5$	$3-5 \%$	$4-6 \%$		$1-21 \%$	$4-7 \%$
Jets	Energy resolution	JES	Efficiency	Energy resolution	JES
$p_{\mathrm{T}}^{\text {lead }}$	$0.3-1 \%$	$0.3-4 \%$	$0.1-2 \%$	$0.4-3 \%$	Efficiency

Underlying event in Z-boson events SYSTEMATICS

- Lepton identication and scale
- Track reconsttruction efficiency
- Pile-up
- Background
- Unfolding

Observable	Correlation	N_{ch} vs $p_{\mathrm{T}}^{\mathrm{Z}}$	$\sum p_{\mathrm{T}}$ vs $p_{\mathrm{T}}^{\mathrm{Z}}$	Mean p_{T} vs $p_{\mathrm{T}}^{\mathrm{Z}}$	Mean p_{T} vs N_{ch}
Lepton selection	No	$0.5-1.0$	$0.1-1.0$	<0.5	$0.1-2.5$
Track reconstruction	Yes	$1.0-2.0$	$0.5-2.0$	<0.5	<0.5
Impact parameter requirement	Yes	$0.5-1.0$	$1.0-2.0$	$0.1-2.0$	<0.5
Pile-up removal	Yes	$0.5-2.0$	$0.5-2.0$	<0.2	$0.2-0.5$
Background correction	No	$0.5-2.0$	$0.5-2.0$	<0.5	<0.5
Unfolding	No	$0.5-3.0$	$0.5-3.0$	<0.5	$0.2-2.0$
Electron isolation	No	$0.1-1.0$	$0.5-2.0$	$0.1-1.5$	<1.0
Combined systematic uncertainty		$1.0-3.0$	$1.0-4.0$	<1.0	$1.0-3.5$

- High β^{*} runs for ATLAS, in parallel with TOTEM around CMS
- In October 2011, ATLAS/ALFA had dedicated beam time:
- Intermediate optics with $\beta^{*}=90 \mathrm{~m}$
- Phase advance of $\beta_{y}=90^{\circ}$ (parallel-to-point focusing in vertical)
- Phase advance of $\beta_{x} \simeq 180^{\circ}$
- Small emittance (2-3 $\mu \mathrm{m}$.mrad)
- Small divergence (~ 3 rad)
- One pair of colliding bunches with low intensity ($\simeq 7^{10}$ protons)
- $\mathcal{L} \simeq 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(\mu \simeq 0.035)$
- 800 k good elastic events used for the analysis of $\sigma_{t o t}$ and the nuclear slope, B

MANCHESTER 1824

- Luminosity estimated by ATLAS: $\mathcal{L}=78.7 \pm 1.9 \mathrm{pb}$
- Calibration transfer uncertainty from spread of measurements
- Uncertainty on the absolute luminosity scale is 1.53%
- Beam backgrounds 0.2%
- Individual contributions added in quadrature (before rounding)
- Total systematic uncertainty smaller than statistical one

Systematic uncertainty	Λ	$\bar{\Lambda}$
MC statistics	0.003	0.003
Mass range	0.003	0.003
Background	0.001	0.001
Kinematic weighting	0.001	0.001
Other contributions	$<5 \times 10^{-4}$	$<5 \times 10^{-4}$
Total	0.004	0.004

MANCHESTER 1824

- Many possible parametrisations
- One popular one is that presented by B. Lundberg in PRD 40 (1989) 3557
- Assumes energy independence and neglects detector effects

$$
P=\left(-0.268 x_{F}-0.338 x_{F}^{3}\right) \times\left(1-e^{-4.5 p_{T}^{2}}\right)
$$

MANCHESTER 1824

THE ATLAS DETECTOR: CALORIMETERS

- EM calorimeters
- Barrel $|\eta|<1.475$
- End-cap
$1.375 \leq|\eta|<3.2$
- Hadronic calorimeters
- Barrel $|\eta|<1.0$
- Extended barrel
$0.8 \leq|\eta|<1.7$
- End-cap $1.5 \leq|\eta|<3.2$
- Forward calorimeters
- LAr $3.2 \leq|\eta|<4.9$

[^0]: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults\#Soft_QCD

