Latest Results from the ALPHA experiment and Upgrades for the Next Run

HEP seminar 8.10.2014 Petteri Pusa

Antihydrogen Laser PHysics Apparatus http://alpha.web.cern.ch/

Overview

- Introduction
- ALPHA2 Apparatus
- Highlights 2010 present
- Present status & future

Overview of the experimental goal

- Ultimate long term goal 1S-2S antihydrogen atomic transition

- Haench et al. Currently measured at 10⁻¹⁵ precision. One of the best studied physical systems

- => Low energy region test for the CPT
 -symmetry conservation

- Extreme experimental difficulties in confining the antihydrogen

- Need 0.5K stable atoms, starting point at the moment @ 5.3 MeV antiprotons

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

Transfer magnets

ALPHA - 2

Neutral trap cut-through

Silicon vertex detector upgrade for ALPHA-2

72 hybrid modules in three layers, each having 256x256 DSSD. 37k readout channels

Zone layout

What to expect from trapping A-1

- •Starting point is ~30000 antiprotons at about 100K and ~2M positrons at about 40K
- •Mix these 1s by autoresonantly exciting the antiproton plasma
- •As result, some 6000 antihydrogen atoms are created.
- •In average less than one remains in the 0.5K neutral trap
- •This cycle takes about 20mins
 - => ALPHA-2 uppgrade
 - Separate catching and neutral trap region (catching region can operate independently)
 - APLHA-2 has four neutral traps (formed Hbar can be stored)
 - A-2 Enabled access for lasers precision measurements

ALPHA highlights paving way for precision measurements

- 2010 Trapped Antihydrogen
- 2011 Confinement of Hbar for 1000 seconds
- 2012 Resonant quantum transitions in trapped antihydrogen atoms
- 2013 Description and first application of new technique to measure the gravitational mass of antihydrogen
- 2014 An experimental limit on the charge of antihydrogen
 Trapping and proof of principle that the experiments can be performed with very low amount of antiparticles

Trapped neutral antihydrogen

Trapped neutral antihydrogen, originally 39, identified using bias -fields and fast magnet shutdown

Doi:10.1038/nature09610

Long confinement

As trapping rates improved hold times before releasing the neutral trap were extended up to 2000s

Doi: 10.1038/NPHYS2025

µ-wave spectroscopy

Proof of principle for spectroscopic measurements.

Antihydrogen spin-flip using microwaves.

Data taken as microwaves on/off, at off-resonance and with two different B-fields, datasets in 'appearance' and 'disappearance' -modes.

Result corresponds to a relative precision of about 4x10-3, compared with hydrogen.

Doi: 10.1038/nature10942

Gravitational measurements M_q/M_i

Proof of principle for a gravity measurement

Retrospect analysis of annihilation data by using reverse cumulative average -method to calculate <y|t> the vertical average of the annihilation position after the the neutral trap has been released.

This method sets an experimental limit for gravitational/inertial mass to be < 75.

Doi: 10.1038/ncomms2787

Antihydrogen charge

Retrospect analysis of data indicates antihydrogen is charge neutral with $Q=(-1.3 \pm 1.1 \pm 0.4)x10-8$ e charge.

DOI: 10.1038/ncomms4955

Last Saturday

Run 34855, Event 4301, Trigger 4309, VF48 Tim

2014 Strategy

- All principal components now operational
 - Laser access
 - Detector
 - Catching trap
 - Neutral trap cryostat
 - Some vacuum problems though
- With an enhancement cavity encompassing the trap at least 1W CW 243nm laser light will be available for probing the 1S-2S two photon transition => with this power excitation is predicted to occur within the antihydrogen trapping lifetime established in A-1

Conclusions

- Proof of principle --studies have been carried out
- Go through the learning curve to operate the new device (A-2)
- Established conditions sufficient, also hope to...
 - Improve trapping rate
 - Colder atoms (Laser cooling)

=> Spectroscopic measurements

Many thanks for your attention!