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Theoretical discussion about the quantum theory of gravity is a least 70 years old.  Meanwhile technology in the 
service of physics has developed by leaps and bounds.   The discovery of the Higgs boson and of the E-
polarization of the cosmological microwave background are just two examples of technical achievements in this 
direction.  But so far none of quantum gravity’s touted features have been put in evidence in the lab.   Plans for 
experiments?  Plenty, as you will see.  Hard results?  Not really.   So even though many would class quantum 
gravity as the number-one open problem in theoretical physics, there is no general agreement as to what the true 
theory of quantum gravity looks like.



Planck length - Planck scale
M. Planck, Sitzungsberichte der Königlich Preußischen Akademie der 
Wisseschaften zu Berlin - Erster Halb band (Berlin 1899). 

�P = (�G/c3)1/2 = 1.616× 10−33 cm

mP = (�c/G)1/2 = 2.177× 10−5 g

tP = (�G/c5)1/2 = 5.391× 10−44 s
Max Planck 
(1858-1947)
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In 1899 Max Planck, fresh from his identification of the quantum of action in black body radiation theory, noticed 
that from his h and G and c you can build fundamental units of length, time and mass - fundamental in that they 
do not depend on any specific particle.   At some point it came to be speculated that \ell_P is the scale at which 
quantum effects become noticeable in gravitational physics.  But it is such a tiny length that the issue was all but 
forgotten.    Interest in the issue revived, together with general interest in gravity physics, starting in the 1950’s.   
But let’s jump to our decade.  I would first like to mention, in passing, three types of experiments which have 
been proposed, in the last decade, to test features of quantum gravity.



E2 = c2p2 +m2c4 + f(E,mP )

Modified dispersion relation and gamma ray bursts

E2 = c2p2 +m2c4 + α
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People have speculated that quantum gravity may distort the standard energy-momentum dispersion relation into, 
say, …. with $\alpha, \beta, \cdots$ a set of dimensionless constants. Evidently this relation clashes with Lorentz 
invariance, a principle likely to fall victim to quantum gravity.  One consequence of the proposed distortion is that 
the speed of particles does not asymptote to $c$ for $E\gg mc^2$, but rather remains energy dependent.  This 
prediction can be tested by looking at the duration, at Earth, of a gamma ray burst as a function of energy.  
Gamma ray bursts, comprising photons with a gamut of energies, come from very distant galaxies, and the 
corresponding long timelines allow the energy dependent speed to spread the bursts in time.  Since there must be 
an initial spread, the said measurements can only determine an upper bound on the temporal spread.  Data 
obtained by the Fermi $\gamma$-ray satellite show that $\alpha$, if it does does not vanish identically is 
constrained be no bigger than order unity.  But if $\alpha$ vanishes identically, nothing useful can be said about 
$\beta$.  Evidently the measurements do not settle anything---yet.



Quantum black holes in the LHC?

D dimensional spacetime (D>4)

m(D)
P c2 � 1019 GeV

mP c2 = (�c5/G)1/2 ≈ 1019 GeV

�(D)
P � (�G/c3)1/2

(�(D)
P )D−2 = �P

2 G(D)/G
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A second approach is to search for quantum black holes in the debris of high energy collisions, e.g. in the Large Hadron Collider 
(LHC) in Geneva.  A quantum black hole is one having a mass near Planck mass \m_P.  In reality neither LHC nor any presently 
imagined accelerator can access the corresponding energy, about $10^{19} $GeV.  What the investigators have in mind is the 
string theory-inspired scenario whereby the fermions and gauge fields which make up the matter we perceive, and its 
interactions, are confined to a four-dimensional brane, a subspace, in a world with $D>4$ dimensions.  Gravity pervades the $D
$-dimensional space-time.  In such  a world the true Planck length $\ell_P^{(D)}$, the critical scale at which quantum effects 
become strong for gravity, is related to the nominal Planck length $(\hbar G/c^3)^{1/2}$ ($G$ is the measured Newton constant) 
by  (\ell_P^{(D)})^{D-2}=\ell_P{}^2 G^{(D)}/G where $G^{(D)}$ is the gravitational constant in $D$ dimensions.  It is obviously 
possible that $\ell_P^{(D)}\gg \ell_P$.  Since $m_P^{(D)}=\hbar /(c\,\ell_P^{(D)})$, the physical Planck mass in the brane scenario 
can be much below $(\hbar G/c)^{1/2}$ and the LHC may be able to access the corresponding energy and produce black holes.  
Thus far no evidence of black hole formation has surfaced at the LHC.  This might mean that  $G^{(D)}$ is not very large  
compared to $G (\ell_P^{(D)})^{D-4}$, or that space-time is four dimensional after all.     From now on I am going to assume that 
spacetime is 4-D.



[x̂, p̂] = ı�
�
1 + β0

� p

mP c

�2
�

I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim & Č. Brukner, Nature Physics 8, 393–397 (2012)

Modified uncertainty principle: a laboratory experiment

∆x∆p ≥ �/2
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The Heisenberg uncertainty relation is closely bound up with the form of the canonical commutator.
It has been speculated that due to quantum gravity there might be a correction to the canonical commutator, for 
example ...   That would give a modified uncertainty relation.   Today the bounds on beta_0 are of order 10^(33).   
A first order correction would have its coefficient bounded by 10^(10).   The following experiment suggested by 
Pikovski et al.  A Planck scale mass constitutes an harmonic oscillator attached to the wall of an optical cavity.  A 
probe beam enters several times at particular phases during the oscillator’s cycle.   The commutator 
characteristics are thus mapped onto the phases of the beam.  This beam is then measured interferometrically.    
This experiment has not yet run.    It is expected to allow reduction of the bound on beta_0 to order unity.



✦ Canonical quantum gravity

✦ Loop quantum gravity

✦ String theory - branes - extra large dimensions

✦ Faddeev quantum gravity

✦ Causal dynamical triangulations

✦ Horava-Lifshitz gravity

✦ others

Some quantum gravity theories
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The dearth of experimental results about quantum gravity explains why lots of quantum gravity schemes survive 
and coexist.   Here is a partial list of frameworks for quantum gravity, old and new.         Loop quantum gravity is 
a background independent canonical theory which can also be construed as a quantization of Einstein theory 
using variables that are more like electric and magnetic fields of gauge theory than like metric.          In Faddeev 
gravity theory, the Lagrangian is quadratic in first order derivatives of 10 4-D vectors.  This theory is classically 
equivalent to GR, but would lead to a different quantum gravity from the above.      Causal dynamical 
triangulations is another background independent theory which starts by dividing up spacetime into simplices 
which are then stacked together in accordance with a causality rule.  Calculations in this theory are mostly 
numerical.     Horava gravity gives up local Lorentz invariance for renormalizability.            Many ingenious ideas, 
but none of them is experimentally tested.   It would be be neat for the subject to have some experimental test.



Quantum foam (Wheeler 1955)

• On sufficiently small scale, space is not smooth 
and has a complex topology (quantum foam)

• Rapid temporal fluctuations of the 3-geometry

• The critical scale - Planck’s

John A. Wheeler
(1911-2008)

�P = (�G/c3)1/2 = 1.616× 10−33 cm
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At least some of those theories I mentioned should predict the following set of features of quantum gravity
(conjectured by Wheeler):

a) space below some critical length scale becomes not-smooth, and may exhibit a multiconnected topology.
b) for a given observer, the space geometry fluctuates rapidly on that same scale
c) The critical scale at which non-smoothness emerges is Planck’s.

Why is this?



quantum linear gravity
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ĥµν =
eµν�

32πG|k|
(âk e

ıkαxα

+ h.c.)

ĝµν = ηµν + ĥµν
gµν
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While there is no agreement on how to generically quantize gravity, few would deny that we know how to quantize 
weak gravitational fields.  One separates the metric of spacetime into a Minkowski background plus a perturbation 
h.  Einstein equations of gravitation, when linearized in h (with choice of gauge) tell us that h obeys the wave 
equation familiar from E&M.  One quantizes h as one would the vector potential in E&M; there is need to pick a 
gauge that simplifies the equation and the energy momentum tensor.  One thing to do is to estimate the 
fluctuations of h in the vacuum (no gravitons) as a function of spatial resolution.   This is seen in the graph.  
Notice that the variance of h approaches unity as the resolution approaches the Planck scale.  In pictures ...



Achilles’ heel - localization

∆x ∼ �P

∆p ∼ �
�P

macroscopic mass M

elementary particle, mass m ∆p ∼ �
�P

τ�
M�P

< �P

K =
�
m2c4 + c2(�/�P )2 −mc2 ∼ c�/�P = 1019 GeV

τ <
M

mP c
�P ≈ 10−32 s

∆v ∼ �
M�P
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Since quantum foam should arise quite generically, we would like to expose it experimentally.  Here is the 
problem.               Suppose one tries to probe spacetime on Planck scale with an elementary particle.    Such 
microscopic probes require energies 8 orders above those of the most energetic cosmic rays, which themselves 
are very far from being imitated  by accelerators.   Things are easier at larger m.  Wouldn’t we be doing better with 
macroscopic probes? Even before asking how this would be done consider the following.   A macroscopic probe 
needs to be activated only over extremely short times (assuming M=1 ton), beyond all foreseeable technological 
temporal resolution.              In light of these examples it is fair to say that the Achilles’ heel of many procedures 
for bringing out quantum gravity’s experimental consequences is in the requisite amount of localization of the 
probes. 
The conclusion can only be one: to probe Planck scale roughness of spacetime, one has to avoid localization of 
the probes, either before or after any measurement.  



Translate a macroscopic probe’s c.m. by a controllable distance 
of order Planck’s length, starting from an unspecified point - all 
this in the initial frame of rest of the c.m.

What do we want to achieve ?
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So what we want to achieve is ......   This gets us out of having to localize the probe as part of the experiment.  But 
how does this help us?  The idea is that shifting a macroscopic object by distances of order Planck’s length should 
be qualitatively different from shifting by a macroscopic distance (over which spacetime looks smooth).  In some 
theories --- notably loop quantum gravity --- there is no such thing as smaller than Planck distances.   More 
generally can illustrate with the following analogy.   Think of dragging a block of wood across the floor.  If over a 
macroscopic time we move it a macroscopic distance - 1 cm say - we are up against dynamic friction.  If we drag 
it in the same time interval over an atomic distance the motion is opposed by static friction - much larger.  There 
is direct contact between asperities of atomic scale on the boundaries; by contrast, when the shift is big, those 
irregularities are literally melted away.  By analogy we expect a shift by a Planck length to be, in some sense, 
harder to perform than a much longer shift.   



D

An experiment to expose the quantum foam

p/n pp
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n

JB,  Phys. Rev. D 86, 124040 (2012); Found. Mod. Phys.  ArXiv1301.4322.
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Let me now describe an idea for an experiment based on these remarks.   
First look at an idealized experiment. 
An accurately  rectangular (need not be cubic in shape) block of very transparent dielectric--either amorphous or 
crystalline of the cubic class (optically isotropic).   The index of refraction is n.  A single photon emitter sends an 
optical photon accurately normally to one face.  A detector records the photon after traversal.  Inside the block the 
photon has momentum reduced by a factor n.  This is important, so let me show why.



A photon’s momentum

H = B/µ
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ρp =
|D×B|
4πc

ρp =
|E×H|
4πc
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kðrÞ$ ¼ i@ @

@xj
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Actually the result touches on a century old controversy - Minkowski vs Abraham - about the form of the 
electromagnetic energy-momentum tensor in matter.   Experiments meant to decide between them were carried 
out, at least since the 70’s.  Some supported Abraham and some Minkowski.  The mystery may have been solved 
by a 2010 paper of Barnett: both are right, Abraham’s momentum density refers to the kinetic momentum and 
Minkowski’s to the canonical momentum.  I use Abraham’s form.  With Minkowski’s form a slight change in the 
formulas, and the sign of the effect may be opposite.  But the order of magnitude is the same.



Translation of the c. m. in initial rest frame
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The argument gives the translation of the c.m. of the block due to the passage of the photon.  No knowledge of 
initial position of the block used - localization not needed.    With suitable choice of parameters the translation 
can be made comparable with Planck’s length.    The question that we are going to face is that such a short 
translation may be impeded by spacetime fluctuations. What will then really happen to the photon?  Before turning 
to those issues let me clarify some details about the experiment.
     



Some necessary additions
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Our idealized set up needs to face some realities.  The block cannot be free in the lab, so the best alternative is to 
have it suspended by a very long light thread. Calculations show the restoring horizontal force to be negligible.   If 
the incoming photon is transversally localized it will deposit momentum in a narrow tube within the block.  This 
momentum will be transported out to the rest of the block by phonons, but they travel slowly, and so by the time 
the photon is out, only a small sector of the crystal partakes in the translation.  To get a cleaner situation, one can 
use an optical system to broaden the beam so as to encompass the full breadth of the block, and one to refocus 
the outgoing beam onto the photon detector.  



Questions of compatibility

[R̂(t), P̂(t)] = ı�I

∆X̂ ≡ R̂(tf )− R̂(ti) What is [∆X̂, P̂] ?

[∆X̂, P̂] = 0

r̂i(t) and p̂i(t) subject to [x̂, p̂x] = ı�, [x̂, p̂y] = 0, etc.

R̂(t) ≡ 1

M

�

i

mir̂i(t) P̂(t) ≡
�

i

p̂i(t)
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We have been talking about momentum of the c.m. and about its translation.  Are these two variables not 
incompatible in quantum theory?                         

The argument shows that translation is compatible with momentum.

Another thing to note: the c. m. coordinate is canonically conjugate to the total block momentum, a conserved 
quantity. This serves as counter to any claim that it should not matter how much one translates the c.m. - that c. 
m. is devoid of importance in our context. 
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But in reality there is some back reflection. According to Fresnel’s formulae, when an electromagnetic wave 
transits from a medium with index n_1 to one with n_2 across a plane sharp boundary, the reflected and 
transmitted electric fields get multiplied by ....  Thus if the wave goes though the block (2 transmissions) its 
amplitude pick up a factor F_0 which includes the phase accrued during crossing the block.  This factor is 
associated with the Delta X_0 translation of the block c.m.  If the wave undergoes a reflection on front and back of 
the block j times before going on to the left, the amplitude of the transmitted E field is multiplied by F_j where you 
see the phase contribution from 2j crossings as well as the expected (E_r/E_i)^(2j) factor.  Here is the total 
amplitude for the state with a left-moving photon;  gamma_i is the incoming photon state.  We really have an 
entangled state, with each different outgoing photon phase corresponding to a different block translation.  

What would be the probability that the photon did not bounce internally given that it has been detected? 



Probabilities
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  p_j  is a priori probability that the photon gets through with j internal reflections.   p_<   is the probability the 
photon gets through.  Period.   We use n=1.6     You see the probabilities for more and more internal bounces fall 
off quickly.   The total transit probability is 90%.   The probability that no internal reflection took place when we do 
get a photon through is 99.7%.  So if you see that a photon got through, it means the block was shifted by \delta 
X_0.
This last conclusion assumes that the block will translate by Delta X_0 whenever the circumstances would dictate 
that the photon cross it.  But we argued that motion by about a Planck length is impeded.   I would think, then 
that, with some probability, the block does not translate.  But then conservation of momentum would be violated if 
the photon crossed the block.    Something else must happen to the photon; for sake of argument let’s say it is 
back-reflected.  This would happen with some probability over and above that required by Fresnel’s classical 
formula.  Detecting the corresponding reduced transmission could reveal the quantum foam.
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But the anomalous contribution may well be small.   To bring out the small amount of anomalous reflection, I 
propose the following arrangement.  

The original system is accompanied by an analogous one based on a lighter block of like material and same 
thickness.  A beam-splitter and mirror assembly gives the photon a choice of two paths.  Over the upper path the 
back-reflection will have the anomalous part; over the lower one this last will be suppressed.  Hence were the two 
arms balanced and perfectly symmetric, we would expect D’ to detect the photon more often than D.  To suppress 
background D and D’ should be triggered after the single photon leaves E, and to give the trigger signal time to 
reach them before the photon a delay should be interposed before the beam-splitter.



Sources of noise
• confusion from background light

• hits by cosmic rays

• hits by solar neutrinos

• hits by dark matter particles

• dispersion in the dielectric

• restoring force from the fiber

• Newtonian attraction between the blocks

• noise from blackbody photons

• thermal agitation of the c.m. due to molecular hits on block
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 All that was for an ideal experiment.  In reality there is noise.  Here is a partial list of possible sources.  Analysis
shows that with the proposed parameters all but the last two have little weight.   But thermal noise is a problem.



Noise from blackbody photons
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λpeak =
1.60 �c
kT

=
0.367 cm

TK

ppeak = 3.92 kBT/c

∆p ∼ T 5/2

At 4K the thermal photon momentum deposited during optical photon 
traversal is only 1%  of that brought by the optical photon.

However,  after traversal the block is left in a new state of motion with 
respect to that at optical photon ingress.   Thus it is preferable to go to 
0.5K.   Wavelengths are then larger than L and the crossection is 
Rayleigh’s:                        .    So at 0.5K the probability of a thermal 
photon hit during optical photon traversal is very small.

σ ∼ λ−4 ∼ T 4

N = 0.244

�
kBT

�c

�3

= 20.3TK
3 cm−3
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Given the thermal photon density and momentum at peak of spectrum it is easy to see that at room temperature 
the thermal momentum deposited by photon scattering during optical photon traversal is larger than that 
deposited by the optical photon - experiment would fail.  Note that the momentum deposited scales at T^5/2 and 
goes down fast at T decreases.  At 4K this thermal momentum is only 1% of the optical photon momentum.
There is one problem, though:  The thermal momentum puts the block in a different state of motion from its 
original one.  Makes it hard to exhibit a translation specifically due to spacetime fluctuations.   If we go to 0.5K 
the peak wavelength is already larger than the block and geometric thermal photon cross-section will be replaced 
by Rayleigh’s, scaling as T^4.  Very rapidly the chance for a thermal photon scatter during optical photon traversal 
is totally negligible.



Agitation due to gas molecules

Tc ≈ 10−29 oK

but the game is not up!
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 V_t is the root mean square speed of the block c.m. in equilibrium at temperature T.  Compare this with the 
speed given the c.m. by the transiting photon.  They will be equal at the critical temperature T_c.  With the 
numbers quoted earlier for \omega, M and n we get T_c=10^{-29} K, an impossible goal.     But actually the 
situation is not as bad as it seems.     The aforementioned thermal jitter of the c.m. is maintained by the collisions 
of ambient gas molecules with the block. The speed V_t which we estimated above is the random c.m. speed 
acquired after so many collisions that thermodynamic equilibrium has been reached between gas and block.  
However, between collisions the block’s c.m. moves uniformly, and can be said to be at rest in some reference 
frame.  In a sufficiently good vacuum, collisions are very rare and the c.m. velocity acquired by the block from one 
photon will not get changed much during its traversal.   It then becomes irrelevant that there is a large equilibrium 
thermal noise of the c.m.   The obstruction to the experiment is not the c.m. thermal motion per se, but the 
individual changes to it  during the photon transit.



Beating the thermal jitter

L2 = 2(2L1L2 + L2
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3

µ = 4 a.m.u.

block density = 6 g cm−3

L1 = 1mm

L2 = 5mm

n = 1.6

λ = 445 nm

T = 300 oK

8× 10−9 Pa3.3× 10−10 Pa

T = 0.5 oK
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  How frequent are these?  Define L^2 as the surface area of the block.   Look at this product.   Here we have the 
thermal speed of a typical air molecule.  \mu is the molecular mass.    Then the number density of air molecules 
times their typical speed times L^2 is the flux onto the block.  We multiply the flux by the transit time of the 
photon.  Require this average number of hits to be small compared to 1.  Thus Pi is really the probability of a hit 
during transit.  With the ideal gas law we replace rho by P getting this criterion.  Helium would be an environment 
gas of choice.  So \u=4 a.m.u.   We further take these values.  We thus need to have the pressure well below 8 x 
10^{-9} Pa.  It turns out one has to work at low temperatures 0.5 K.  Then the requirement is pressure below 3.3 x 
10^{-10} Pa.  In fact today, using off the shelf equipment and some care, it is possible to reach 10^{-11} Pa.  This 
means only one out of 30 transits is accompanied by a hit.    The low temperature is required to control thermal 
photon noise - low pressure won’t help there.  
Bottom line: Experiment can be done.


