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The Standard Model
The Standard Model is a gauge-symmetric quantum field theory describing  

interactions between particles of matter 

gauge symmetry: fundamental geometric principle valid at high scales but  
hidden by the vacuum at low scales 

quantum field theory: effective theory valid at low scales but unable to  
describe the highest (gravitational) scale 

Renormalization absorbs the unknown physics at high scales 
Most parameters largely insensitive to details of high-scale physics 
Higgs boson mass very sensitive to unknown physics at a higher scale 

Interactions determined by transition amplitudes derived from the action

Lagrangian with dimensions m4 defines interactions

3



Hidden symmetry

36 THE ELECTROWEAK THEORY
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is the field tensor of the U(1)
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group. The charge associated with the SU(2)
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group is
called “weak” charge and that associated with the U(1)

Y

group is called “hypercharge”.
There is one scalar field in the Electroweak theory: a complex doublet under SU(2)

L

transformations with hypercharge equal to 1. Its Lagrangian is:
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The fermion fields are massless in the fundamental Lagrangian, so can be separated into
right- and left-handed helicity SU(2)

L

doublets:
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) , (5.7)

where the positive (negative) sign corresponds to the right-handed (left-handed) helicity
state. The fermion Lagrangian is

L
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�̃ = i⌧
2

�, and yuij and ydij are Yukawa fermion-scalar couplings that are different for each
pair of fermions (i, j are generation indices). The right-handed partners to the down-type
and up-type fermions are  d

R and  u
R, respectively. There are three generations of fermions

separated into quarks and leptons, and the Yukawa couplings are not diagonal with re-
spect to these generations. These are the only couplings in the model that are generation-
dependent. The hypercharges Y are respectively 1/3, 4/3, -2/3, -1, and -2 for left-handed
quarks, right-handed up quarks, right-handed down quarks, left-handed leptons, and right-
handed charged leptons. If neutrinos were massless, no right-handed neutrinos would be
required; even with massive neutrinos there may not be right-handed neutrinos (the mass
terms could be of Majorana rather than Dirac form). If right-handed neutrinos exist they
have no weak charge or hypercharge.

To complete the Standard Model, one simply needs to add another gauge field to L
gauge

.
It transforms under the group SU(3)

c

; only quarks are charged under this group.

The Higgs boson is an SU(2) x U(1) scalar doublet field  
Higgs mechanism: field is non-zero at the minimum of its potential
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Electroweak symmetry breaking

The SM has one scalar electroweak doublet  eld, the Higgs  eld:

The Higgs potential has a minimum at a non-zero value of the Higgs $eld

Traditionally this is demonstrated with the potential of a U(1)-symmetric scalar 
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Electroweak symmetry breaking

Conceptually straightforward to extend symmetry-breaking to SU(2)
L
 ¥ U(1)

Y

Less straightforward pictorially
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Hidden symmetry
Gauge symmetry: choose coordinates φ1 = φ2 = φ3 = 0 throughout spacetime

● φ0

φ1

● φ0

φ1

● φ0

φ1
x →

scalar field:

gauge field: x

Ax

32 THE HIGGS MECHANISM

The parallel-transport of the phase can be seen in the bilinear term eµp
�
@µ✏A

µ, which
corresponds to a vertex with one @µ✏ line and one Aµ line. Recalling equation 4.2 for
a free field, @µ✏ = kµ✏, the vertex projects Aµ along the direction of propagation of ✏.
The connection Aµ parallel-transports ✏ into the potential well. One can use a coordinate
system, or equivalently a gauge, where this term is zero. Changing to this coordinate
system requires to the following changes in the fields:

�0 = ei✏/�0�

A0
µ = Aµ +

1

e�
0

@µ✏. (4.9)

In this gauge the connection follows the scalar field oscillations about the vacuum in group
space; this component of the scalar field is absorbed by the connection and the Lagrangian
becomes:
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We see that oscillations in ✏ have moved to oscillations in the connection; the two-component
gauge field has acquired a third field, i.e. another degree of freedom, along its direction
of motion. This is the longitudinal component of the massive vector field. This choice of
coordinates is known as the “unitary”, or “physical” gauge.

4.2.2 SU(2)-charged scalar field

A scalar charged under SU(2) can have any half-integer charge. We consider the case
of a charge 1/2 scalar, which can be represented as a complex doublet �i, i = 1, 2. The
analysis continues along the lines of the Abelian case, though now with group indices
on �, Aµ and Fµ⌫ . The set of connections again describes the parallel-transport of the
momentum of the field, but now with the possibility of changing the SU(2) charge of the
field:

D�i = [�ij@µ � ig(
⌧a

2
Aa)ijµ]�

jdxµ. (4.11)

where ⌧a is an SU(2) basis that can be represented by the usual Pauli matrices. Taking the
potential

V (�) = �µ2(�†�) + �(�†�)2, (4.12)

the ground state corresponds to an expectation value of h�†�i = µ2/2�. Now we choose
axes such that this expectation value is real, positive, and in the “down” state:

h�i
0

=

 

0

µ/
p
2�

!

. (4.13)

Expanding the scalar fields about the vacuum expectation value gives a Lagrangian
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✓
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0

)

�
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4
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µ⌫F

aµ⌫ ,

(4.14)

Phase oscillations become gauge oscillations in these coordinates 
Massive gauge boson acquires a spin-0 degree of freedom  

Costs energy to oscillate about the phase
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Hidden symmetry
Lagrangian with  

manifest gauge symmetry
Lagrangian expanded  

about the vacuum

25 parameters: 
3 gauge couplings 

1 vacuum expectation value 
1 scalar mass  

12 fermion masses 
4 quark mixing 

4 neutrino mixing

Assuming Dirac neutrinos

6



Effective field theory
The SM Lagrangian contains only renormalizable terms 

Effective field theory adds non-renormalizable terms 
Parametrize high-scale physics in powers of inverse scale 

Aim to measure the effects of high-scale physics in EFT coefficients 

For example: 
  

cWWZ (v2/ΛNP2)(Wμν Wνρ Zρμ)

Dimensionless  
effective coupling

Suppression from  
scale hierarchy

Dimension-6 
operator

Wμν = ∂μWν - ∂νWμ
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SM effective field theory

The SM effective field theory has been characterized up to dimension-8 operators 

One operator violating lepton number conservation

76 operators conserving baryon number (one generation) 
2499 operators for three generations 
4 operators violating baryon number conservation

30 operators violating B or L, and B-L

993 operators (one generation)

Equations of motion reduce number of dimension-6 operators from 76 to 59 
Focus on these operators to probe for new physics independent of generation

8
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Measurements in EFT
EFT ideal for precision measurements at a fixed scale 

Need care in interpreting measurements over a range of scales 
Include running of EFT parameters 
EFT is only valid for scales higher than those probed 

Care required in expanding in orders of EFT 
|ℳ|2(SMEFT) = |ℳ|2(SM) + (1/Λ2)ℳSM* ℳd6 + 1/Λ4 |ℳd6|2 + 1/Λ4 ℳSM* ℳd8 + … 

Lower bound on constrained scale Λ typically  
maximum Q2 of measurement 

Constraints on dimension-6 coefficients (g/Λ)2: 
linear exclusion in g-Λ plane

9
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Construction of EFT

Pseudo- 
observables

Simplified  
template 

cross sections

Differential  
cross sections

Higgs  
measurements

TGC 
measurements

QCD 
measurements

Electroweak  
precision 

measurements

Higgs &  
electroweak  

EFT operators

QCD &  
four-fermion   

EFT operators

SM EFT 

Nature*

*d≤TeV-1 
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Higgs boson production
Process Diagram

Events produced
Status

gluon fusion (ggF)

vector boson  
fusion (VBF)

associated VH

associated ttH

7 TeV 8 TeV 13 TeV

75k

5.5k

4.1k

0.4k

430k

32k

23k

2.7k

1800k

140k

86k

19k

Observed

Evidence

Evidence

Evidence
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Higgs boson decay
Process Diagram

Events produced
Status

H→bb

H→ZZ

H→WW

H→γγ

7 TeV 8 TeV 13 TeV

49k

18k

5.3k

0.2k

283k

440k

31k

1.1k

1200k

105k

2.2k

4.6k

>95% C.L.

Observed

EvidenceH→ττ 130k

13k 54k Observed

Observed

12



Higgs measurements
11

TABLE IV. Event selection summary. Selection requirements specific to the eµ and ee/µµ lepton-flavor samples are noted as
such (otherwise, they apply to both); a dash (-) indicates no selection. For the nj � 2 VBF-enriched category, met denotes
all types of missing transverse momentum observables. Values are given for the analysis of 8TeV data for mH =125GeV; the
modifications for 7TeV are given in Sec. IVE. All energy-related values are in GeV.

Objective
ggF-enriched VBF-enriched

nj =0 nj =1 nj � 2 ggF nj � 2 VBF

Preselection

All nj

8
>>>><

>>>>:

p `1
t

> 22 for the leading lepton `1
p `2
t

> 10 for the subleading lepton `2
Opposite-charge leptons
m`` > 10 for the eµ sample
m`` > 12 for the ee/µµ sample
|m`` �mZ |> 15 for the ee/µµ sample
pmiss
t

> 20 for eµ pmiss
t

> 20 for eµ pmiss
t

> 20 for eµ No met requirement for eµ
Emiss
t,rel > 40 for ee/µµ Emiss

t,rel > 40 for ee/µµ - -

Reject backgrounds

DY

8
><

>:

pmiss (trk)
t,rel >40 for ee/µµ pmiss (trk)

t,rel >35 for ee/µµ - pmiss
t

> 40 for ee/µµ
frecoil < 0.1 for ee/µµ frecoil < 0.1 for ee/µµ - Emiss

t

> 45 for ee/µµ
p ``
t

> 30 m⌧⌧ <mZ � 25 m⌧⌧ <mZ � 25 m⌧⌧ <mZ � 25
��``,met>⇡/2 - - -

Misid. - m`
t

> 50 for eµ - -

Top

(
nj =0 nb =0 nb =0 nb =0
- - - p sum

t

inputs to BDT
- - - ⌃m`j inputs to BDT

VBF topology

- -

See Sec. IVD for
rejection of VBF &
VH (W,Z! jj),
where H !WW ⇤

mjj inputs to BDT
�yjj inputs to BDT
⌃C` inputs to BDT
C`1 < 1 and C`2 < 1
Cj3 > 1 for j3 with p j3

t

> 20
OBDT � � 0.48

H !WW ⇤ ! `⌫`⌫ m`` < 55 m`` < 55 m`` < 55 m`` inputs to BDT
decay topology ��`` < 1.8 ��`` < 1.8 ��`` < 1.8 ��`` inputs to BDT

No m
t

requirement No m
t

requirement No m
t

requirement m
t

inputs to BDT
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FIG. 35. Postfit combined transverse mass distributions
for nj  1 and for all lepton-flavor samples in the 7 and
8TeV data analyses. The plot in (b) shows the residuals
of the data with respect to the estimated background com-
pared to the expected distribution for an SM Higgs boson
with mH =125GeV; the error bars on the data are statisti-
cal (

p
Nobs). The uncertainty on the background (shown as

the shaded band around 0) is at most about 25 events per
m

t

bin and partially correlated between bins. Background
processes are scaled by postfit normalization factors and the
signal processes by the observed signal strength µ from the
likelihood fit to all regions. Their normalizations also include
e↵ects from the pulls of the nuisance parameters.

nique [23] that improves background rejection. An
improved definition of missing transverse momentum,
pmiss

t

based on tracks, is introduced in the analysis
since it is robust against pile-up and provides im-
proved resolution with respect to the true value of
missing transverse momentum.

Signal acceptance is increased by 75% (50%) in the
nj =0 (1) category. This is achieved by lowering the p `2

t

threshold to 10GeV. Dilepton triggers are included in ad-
dition to single lepton triggers, which allows reduction of
the p `1

t

threshold to 22GeV. The signal kinematic region
in the nj  1 categories is extended from 50 to 55GeV.
The total signal e�ciency, including all signal categories
and production modes, at 8TeV and for a Higgs boson
mass of 125.36GeV increased from 5.3% to 10.2%.

The methods used to estimate nearly all of the back-
ground contributions in the signal region are improved.
These improvements lead to a better understanding of
the normalizations and thus the systematic uncertainties.
The rejection of the top-quark background is improved
by applying a veto on b-jets with p

t

> 20GeV, which is
below the nominal 25GeV threshold in the analysis. A
new method of estimating the jet b-tagging e�ciency is
used. It results in the cancellation of the b-tagging uncer-
tainties between the top-quark control region and signal
regions in the nj =1 categories. The Z/�⇤ ! ⌧⌧ back-
ground process is normalized to the data in a dedicated
high-statistics control region in the nj  1 and nj � 2
ggF-enriched categories. The V V backgrounds are nor-
malized to the data using a new control region, based
on a sample with two same-charge leptons. Introducing
this new control region results in the cancellation of most
of the theoretical uncertainties on the V V backgrounds.
The multijet background is now explicitly estimated with
an extrapolation factor method using a sample with two
anti-identified leptons. Its contribution is negligible in
the nj  1 category, but it is at the same level as W+jets
background in the nj � 2 ggF-enriched category. A large
number of improvements are applied to the estimation of
the W+jets background, one of them being an estima-
tion of the extrapolation factor using Z+jets instead of
dijet data events.
Signal yield uncertainties are smaller than in the pre-

vious analysis. The uncertainties on the jet multiplicity
distribution in the ggF signal sample, previously esti-
mated with the Stewart-Tackmann technique [80], are
now estimated with the jet-veto-e�ciency method [79].
This method yields more precise estimates of the signal
rates in the exclusive jet bins in which the analysis is
performed.
The nj � 2 sample is divided into VBF- and ggF-

enriched categories. The BDT technique, rather than a
selection-based approach, is used for the VBF category.
This improves the sensitivity of the expected VBF results
by 60% relative to the previously published analysis. The
ggF-enriched category is a new subcategory that targets
ggF signal production in this sample.
In summary, the analysis presented in this paper brings

a gain of 50% in the expected significance relative to the
previous published analysis [5].

IX. RESULTS AND INTERPRETATIONS

Combining the 2011 and 2012 data in all categories,
a clear excess of signal over the background is seen in
Fig. 35. The profile likelihood fit described in Sec. VIIB
is used to search for a signal and characterize the pro-
duction rate in the ggF and VBF modes. Observation
of the inclusive Higgs boson signal, and evidence for the
VBF production mode, are established first. Following
that, the excess in data is characterized using the SM
Higgs boson as the signal hypothesis, up to linear rescal-

61

p
t

of the neutrino system (p ⌫⌫
t

) replaces the pmiss

t

, and
each lepton’s p

t

is replaced by the generated lepton p
t

,
where the lepton four-momentum is corrected by adding
the four-momenta of all photons within a cone of size
�R=0.1 to account for energy loss through QED final-
state radiation. These quantities are used to compute
m`

t

. Jets are defined at hadron level, i.e., after parton
showering and hadronization but before detector simula-
tion. To minimize dependence on the signal model, and
therefore the theoretical uncertainties, only eµ events in
the nj  1 categories are used. Also, only the 8TeV data
sample is used for these measurements.

The measured fiducial cross section is defined as

�
fid

=
(N

sig

)
obs

C · 1R
L dt

= µ̂ · (� · BH!WW⇤!e⌫µ⌫)exp · A,

(22)

with the multiplicative factor A being the sole di↵erence
with respect to the inclusive cross-section calculation.
The measured fiducial cross section is not a↵ected by
the theoretical uncertainties on the total signal yield nor
by the theoretical uncertainties on the signal acceptance.
The total uncertainty is reduced compared to the value
for the inclusive cross section because the measured sig-
nal yield is not extrapolated to the total phase space.

The correction factors for nj =0 and nj =1 events,
Cggf

0j and Cggf

1j , are evaluated using the standard signal
MC sample. The reconstructed events include leptons
from ⌧ decays, but for simplicity, the fiducial volume is
defined without these contributions. According to the
simulation, the fraction of measured signal events within
the fiducial volume is 85% for nj =0 and 63% for nj =1.

The values of the correction factors are

Cggf

0j = 0.507± 0.027,

Cggf

1j = 0.506± 0.022.
(23)

The experimental systematic uncertainty is approxi-
mately 5%. Remaining theoretical uncertainties on the
Cggf values were computed by comparing the ggF pre-
dictions of powheg+herwig, powheg+pythia8 and
powheg+pythia6, and are found to be approximately
2% and are neglected. The acceptance of the fiducial
volume is

Aggf

0j = 0.206± 0.030,

Aggf

1j = 0.075± 0.017.
(24)

The uncertainties on the acceptance are purely theoret-
ical in origin and the largest contributions are from the
e↵ect of the QCD scale on the jet multiplicity require-
ments.

The cross-section values are computed by fitting the µ
values in the nj =0 and nj =1 categories. The VBF con-
tribution is subtracted assuming the expected yield from
the SM instead of using the simultaneous fit to the VBF
signal regions as is done for the inclusive cross sections.

The non-negligible ggF yield in the VBF categories would
require an assumption on the ggF acceptance for di↵er-
ent jet multiplicities, whereas the fiducial cross-section
measurement is intended to avoid this type of assump-
tion. The e↵ect of the theoretical uncertainties on the
VBF signal yield is included in the systematic uncertain-
ties on the cross sections. The obtained signal strengths
are

µggf

0j,eµ = 1.39 ± 0.27 +0.21
�0.19

+0.27
�0.17,

µggf

1j,eµ = 1.14 +0.42
�0.41

+0.27
�0.26

+0.42
�0.17,

(stat) (syst) (sig)

(25)

where (sig) indicates the systematic uncertainties on the
signal yield and acceptance, which do not apply to the
fiducial cross-section measurements. The corresponding
cross sections, evaluated at mH =125.36GeV and using
the 8TeV data, are

�ggf

fid,0j = 27.6 +5.4
�5.3

+4.1
�3.9 = 27.6 +6.8

�6.6 fb,

�ggf

fid,1j = 8.3 +3.1
�3.0

+3.1
�3.0 = 8.3 +3.7

�3.5 fb.

(stat)(syst)

(26)

The predicted values are 19.9± 3.3 fb and 7.3± 1.8 fb, re-
spectively.

X. CONCLUSIONS

An observation of the decay H!WW ⇤ ! `⌫`⌫ with a
significance of 6.1 standard deviations is achieved by an
analysis of ATLAS data corresponding to 25 fb�1 of in-
tegrated luminosity from

p
s=7 and 8TeV pp collisions

produced by the Large Hadron Collider at CERN. This
observation confirms the predicted decay of the Higgs bo-
son to W bosons, at a rate consistent with that given by
the Standard Model. The SM predictions are addition-
ally supported by evidence for VBF production in this
channel, with an observed significance of 3.2 standard
deviations.
For a Higgs boson with a mass of 125.36GeV, the ratios

of the measured cross sections to those predicted by the
Standard Model are consistent with unity for both gluon-
fusion and vector-boson-fusion production:

µ = 1.09 +0.23
�0.21,

µ
ggf

= 1.02 +0.29
�0.26,

µ
vbf

= 1.27 +0.53
�0.45.

(27)

The measurement uncertainties are reduced by 30% rel-
ative to the prior ATLAS H!WW ⇤ ! `⌫`⌫ measure-
ments due to improved analysis techniques. The corre-
sponding cross section times branching fraction values

1. Define a kinematic selection 2. Subtract background

3. Measure cross sections in the  
fiducial measurement regions 

Includes small  
unfolding and extrapolation 

Basic strategy

13

PRD 92, 021006 (2015)



Differential cross sections

Unfold fiducial measurements  
differentially in distributions

Measurements performed by ATLAS & CMS 
for Higgs decays to WW, ZZ, γγ

14
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Pseudo-observables
Chapter III.1. Pseudo-observables 415

Table 110: Summary of the effective coupling PO and the corresponding physical PO. The parameter Nf
c is 1 for

leptons and 3 for quarks. In the case of the charged-current contact term, f 0 is the SU(2)L partner of the fermion
f . See the main text for a discussion about the errors on the numerical coefficient in the table and the reference
values of {X , �X , ✏X} within the SM.

PO Physical PO Relation to the eff. coupl.

f , �CP
f �(h ! ff̄) = �(h ! ff̄)(SM)[(f )2 + (�CP

f )2]

�� , �CP
�� �(h ! ��) = �(h ! ��)(SM)[(��)2 + (�CP

�� )2]

Z� , �CP
Z� �(h ! Z�) = �(h ! Z�)(SM)[(Z�)2 + (�CP

Z� )2]

ZZ �(h ! ZLZL) = (0.209 MeV) ⇥ |ZZ |2

✏ZZ �(h ! ZT ZT ) = (1.9 ⇥ 10�2 MeV) ⇥ |✏ZZ |2

✏CP
ZZ �CPV(h ! ZT ZT ) = (8.0 ⇥ 10�3 MeV) ⇥ |✏CP

ZZ |2

✏Zf �(h ! Zff̄) = (3.7 ⇥ 10�2 MeV) ⇥ Nf
c |✏Zf |2

WW �(h ! WLWL) = (0.84 MeV) ⇥ |WW |2

✏WW �(h ! WT WT ) = (0.16 MeV) ⇥ |✏WW |2

✏CP
WW �CPV(h ! WT WT ) = (6.8 ⇥ 10�2 MeV) ⇥ |✏CP

WW |2

✏Wf �(h ! Wff̄ 0) = (0.14 MeV) ⇥ Nf
c |✏Wf |2

g �(pp ! h)gg�fusion = �(pp ! h)SM
gg�fusion

2
g

t �(pp ! tt̄h)Yukawa = �(pp ! tt̄h)SM
Yukawa

2
t

H �tot(h) = �SM
tot (h)2

H

Decay channel h ! W+`⌫̄`9701

Also in this case the physical PO corresponding to the charged-current contact terms are defined in9702

complete analogy to the neutral-current case, starting from the 3-body decay h ! W+`⌫̄`. The partial9703

decay width computed in the limit where only the contact term PO is switched on defines the relation9704

between the physical PO and the effective couplings PO as:9705

�(h ! W+`⌫̄`) = 0.143|✏W `|2 MeV , (III.1.44)

where the relative uncertainty in the coefficient due to the experimental error on mW [1] is below ⇠9706

2 ⇥ 10�3.9707

III.1.5 PO in Higgs electroweak production: generalities9708

The PO decomposition of h ! 4f amplitude discussed above can naturally be generalized to describe9709

electroweak Higgs-production processes, namely Higgs-production via vector-boson fusion (VBF) and9710

Higgs-production in association with a massive SM gauge boson (VH).9711

The interest of such production processes is twofold. On the one hand, they are closely connected9712

to the h ! 4`, 2`2⌫ decay processes by crossing symmetry, and by the exchange of lepton currents9713

into quark currents. As a result, some of the Higgs PO necessary to describe the h ! 4`, 2`2⌫ decay9714

Directly relate individual measurements to physical pseudo-observables

σggFfid,0j = [A σ(pp→h)gg-fusion + b σ(pp→h)VBF + c σ(pp→Vh)] ✕  

[Γ(h→WLWL) + Γ(h→WTWT) + ΓCPV(h→WTWT)] / Γtot(h)

61

p
t

of the neutrino system (p ⌫⌫
t

) replaces the pmiss

t

, and
each lepton’s p

t

is replaced by the generated lepton p
t

,
where the lepton four-momentum is corrected by adding
the four-momenta of all photons within a cone of size
�R=0.1 to account for energy loss through QED final-
state radiation. These quantities are used to compute
m`

t

. Jets are defined at hadron level, i.e., after parton
showering and hadronization but before detector simula-
tion. To minimize dependence on the signal model, and
therefore the theoretical uncertainties, only eµ events in
the nj  1 categories are used. Also, only the 8TeV data
sample is used for these measurements.

The measured fiducial cross section is defined as

�
fid

=
(N

sig

)
obs

C · 1R
L dt

= µ̂ · (� · BH!WW⇤!e⌫µ⌫)exp · A,

(22)

with the multiplicative factor A being the sole di↵erence
with respect to the inclusive cross-section calculation.
The measured fiducial cross section is not a↵ected by
the theoretical uncertainties on the total signal yield nor
by the theoretical uncertainties on the signal acceptance.
The total uncertainty is reduced compared to the value
for the inclusive cross section because the measured sig-
nal yield is not extrapolated to the total phase space.

The correction factors for nj =0 and nj =1 events,
Cggf

0j and Cggf

1j , are evaluated using the standard signal
MC sample. The reconstructed events include leptons
from ⌧ decays, but for simplicity, the fiducial volume is
defined without these contributions. According to the
simulation, the fraction of measured signal events within
the fiducial volume is 85% for nj =0 and 63% for nj =1.

The values of the correction factors are

Cggf

0j = 0.507± 0.027,

Cggf

1j = 0.506± 0.022.
(23)

The experimental systematic uncertainty is approxi-
mately 5%. Remaining theoretical uncertainties on the
Cggf values were computed by comparing the ggF pre-
dictions of powheg+herwig, powheg+pythia8 and
powheg+pythia6, and are found to be approximately
2% and are neglected. The acceptance of the fiducial
volume is

Aggf

0j = 0.206± 0.030,

Aggf

1j = 0.075± 0.017.
(24)

The uncertainties on the acceptance are purely theoret-
ical in origin and the largest contributions are from the
e↵ect of the QCD scale on the jet multiplicity require-
ments.

The cross-section values are computed by fitting the µ
values in the nj =0 and nj =1 categories. The VBF con-
tribution is subtracted assuming the expected yield from
the SM instead of using the simultaneous fit to the VBF
signal regions as is done for the inclusive cross sections.

The non-negligible ggF yield in the VBF categories would
require an assumption on the ggF acceptance for di↵er-
ent jet multiplicities, whereas the fiducial cross-section
measurement is intended to avoid this type of assump-
tion. The e↵ect of the theoretical uncertainties on the
VBF signal yield is included in the systematic uncertain-
ties on the cross sections. The obtained signal strengths
are

µggf

0j,eµ = 1.39 ± 0.27 +0.21
�0.19

+0.27
�0.17,

µggf

1j,eµ = 1.14 +0.42
�0.41

+0.27
�0.26

+0.42
�0.17,

(stat) (syst) (sig)

(25)

where (sig) indicates the systematic uncertainties on the
signal yield and acceptance, which do not apply to the
fiducial cross-section measurements. The corresponding
cross sections, evaluated at mH =125.36GeV and using
the 8TeV data, are

�ggf

fid,0j = 27.6 +5.4
�5.3

+4.1
�3.9 = 27.6 +6.8

�6.6 fb,

�ggf

fid,1j = 8.3 +3.1
�3.0

+3.1
�3.0 = 8.3 +3.7

�3.5 fb.

(stat)(syst)

(26)

The predicted values are 19.9± 3.3 fb and 7.3± 1.8 fb, re-
spectively.

X. CONCLUSIONS

An observation of the decay H!WW ⇤ ! `⌫`⌫ with a
significance of 6.1 standard deviations is achieved by an
analysis of ATLAS data corresponding to 25 fb�1 of in-
tegrated luminosity from

p
s=7 and 8TeV pp collisions

produced by the Large Hadron Collider at CERN. This
observation confirms the predicted decay of the Higgs bo-
son to W bosons, at a rate consistent with that given by
the Standard Model. The SM predictions are addition-
ally supported by evidence for VBF production in this
channel, with an observed significance of 3.2 standard
deviations.
For a Higgs boson with a mass of 125.36GeV, the ratios

of the measured cross sections to those predicted by the
Standard Model are consistent with unity for both gluon-
fusion and vector-boson-fusion production:

µ = 1.09 +0.23
�0.21,

µ
ggf

= 1.02 +0.29
�0.26,

µ
vbf

= 1.27 +0.53
�0.45.

(27)

The measurement uncertainties are reduced by 30% rel-
ative to the prior ATLAS H!WW ⇤ ! `⌫`⌫ measure-
ments due to improved analysis techniques. The corre-
sponding cross section times branching fraction values

A >> b, c 
σ(pp→h)VBF and σ(pp→Vh) are functions of pseudo-observables 

Can use effective couplings as intermediate step
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and QED radiation.1 This is why, from the practical point of view, the effective-couplings PO are first9475

extracted from data in the LHC Higgs analysis, and from these the physical PO are indirectly derived.9476

As we discuss below, the latter provide a more intuitive and effective presentation of the measurements9477

performed.9478

The note is organized as follows: the PO for Higgs decays are discussed in Section 2–4, separating9479

two, three, and four-body decay modes. General aspects of PO in electroweak production processes are9480

discussed in Section 5, whereas the specific implementation for VH and VBF is presented in Section9481

6. The total number of PO to discuss both production and decay processes is summarized in Section 7,9482

where we also address the reduction of the number of independent terms under specify symmetry as-9483

sumptions (in particular CP conservation and flavor universality). Finally, a discussion about the match-9484

ing between the PO approach and the SM Effective Field Theory (SMEFT) is presented in Sections 8.9485

The latter section is not needed to discuss the PO implementation in data analyses, but it provides a9486

bridge between this chapter of the YR (Measurements and Observables) and the one devoted to the EFT9487

approaches.9488

III.1.2 Two-body decay modes9489

In the case of two-body Higgs decays into on-shell SM particles, namely h ! ff̄ and h ! ��, the9490

natural physical PO for each mode are the partial decay widths, and possibly the polarization asymmetry9491

if the spin of the final state is accessible.9492

In the h ! ff̄ case the main issue to be addressed is the optimal definition of the partial decay9493

width taking into account the final state QED and QCD radiation.9494

In the h ! �� case the point to be addressed is the extrapolation to real photons of electromagnetic9495

showers with non-vanishing invariant mass.9496

III.1.2.a h ! ff̄9497

For each fermion species we can decompose the on-shell h ! ff̄ amplitude in terms of two effective9498

couplings (yf
S,P ), defined by9499

A(h ! ff̄) = � ip
2

⇣

yf
S f̄f + iyf

P f̄�5f
⌘

, (III.1.1)

where f , f̄ in the right hand side are spinor wave functions. These couplings are real in the limit where9500

we neglect re-scattering effects, that is an excellent approximation (also beyond the SM if we assume no9501

new light states), for all the accessible h ! ff̄ channels. If h is a CP-even state (as in the SM), then yf
P9502

is a CP-violating coupling.9503

In order to match our notation with the  framework [20], we define the two effective couplings9504

PO of the h ! ff̄ decays as follows:9505

f =
yf

S

yf,SM
S

, �CP
f =

yf
P

yf,SM
S

. (III.1.2)

Here yf,SM
S is the SM effective coupling that provides the best SM prediction in the f ! 1 and �CP

f ! 09506

limit.9507

The measurement of �(h ! ff̄)(incl) determines the combination |f |2 + |�CP
f |2, while the9508

�CP
f /f ratio can be determined only if the fermion polarization is experimentally accessible. With this9509

notation, the inclusive decay rates, computed assuming a pure bremsstrahlung spectrum can be written9510

as9511

�(h ! ff̄)(incl) =
h

|f |2 + |�CP
f |2

i

�(h ! ff̄)(SM)
(incl) , (III.1.3)

1A first public tool for Higgs PO is available in Ref. [942].

Combine channels and kinematic regions to determine the pseudo-observables and covariance 
Pseudo-observables capture complete set of information from a given process
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Simplified template cross sections
Extrapolate from measurement region to total production cross section 

Future results will subdivide into several kinematic regions
446 III.2.2. Guiding principles in the definition of simplified template cross section bins

(EW qqH)

ggF bb̄H tHtt̄HVBF
(H+ leptonic V )

V H

qq̄ !WH

qq̄ ! ZH

gg ! ZH

VBF

H+ had. V

(Run1-like)

Figure 215: Stage 0 bins.

Another design goal is to isolate regions of phase space, typically at large kinematic scales, where10480

BSM effects could be potentially large and visible above the SM background. Explicitly separating these10481

also reduces the dependence of the measurements on the assumed SM kinematic distribution.10482

In addition, the experimental sensitivity is maximized by allowing the combination of all decay10483

channels, which requires the framework to be used by all analyses. To facilitate the experimental im-10484

plementation, the bins should be mutually exclusive to avoid introducing statistical correlations between10485

different bins. In addition, the number of bins should be kept minimal to avoid technical complications10486

in the individual analyses as well as the global fit, e.g. in the evaluation of the full covariance matrix.10487

For example, each bin should typically have some sensitivity from at least one event category in order10488

to avoid the need to statistically combine many poorly constrained or unconstrained measurements. On10489

the other hand, in BSM sensitive bins experimental limits are already very useful for the theoretical10490

interpretation.10491

III.2.2.a Splitting of production modes10492

The definition of the production modes has some notable differences compared to Run1 to deal with10493

the fact that the naive distinction between the qq̄ ! V H and VBF processes, and similarly between10494

gg ! V H and gluon-fusion production, becomes ambiguous at higher order when the V decays hadron-10495

ically. For this reason, the V H production mode is explicitly defined as Higgs production in association10496

with a leptonically decaying V boson. The qq̄ ! V H process with a hadronically decaying V boson is10497

considered to be part of what is called “VBF production”, which is defined as electroweak qqH produc-10498

tion. Similarly, the gg ! ZH process with hadronically decaying Z boson is included in what is called10499

“gluon-fusion production”.10500

In principle, also the separation of ZH production with a leptonic Z into qq̄ or gg initial states10501

becomes ambiguous at higher order. For present practical purposes, on the experimental side the split10502

can be defined according to the separate MC samples for qq̄ ! ZH and gg ! ZH used in the analyses.10503

III.2.2.b Staging10504

In practice, it will be impossible to define a set of bins that satisfies all of the above requirements for10505

every analysis. Some analyses will only be able to constrain a subset of all bins or only constrain the sum10506

of a set of bins. In addition, the number of bins that will be possible to measure increases with increasing10507

amount of available data. For this reason, several stages with an increasing number of bins are defined.10508

The evolution from one stage to the next can take place independently for each production mode.10509

ATLAS-CONF-2016-081
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= 0-jet

ggF

� 2-jet
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& 3j

pH
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Figure 216: Stage 1 binning for gluon fusion production.

– The Nj � 2 with VBF topology bin is split further into an exclusive 2-jet-like and inclusive 3-10594

jet-like bin. The split is implemented by a cut on pHjj
T = |~pH

T + ~pj1
T + ~pj2

T | at 25 GeV. See the10595

corresponding discussion for VBF for more details. This split is explicitly included here since it10596

induces nontrivial theory uncertainties in the gluon-fusion contribution.10597

– The Nj = 1 and Nj � 2 bins are further split into pH
T bins.10598

– 0 GeV < pH
T < 60 GeV: The boson channels have most sensitivity in the low pH

T region. The10599

upper cut is chosen as low as possible to give a more even split of events but at the same time10600

high enough that no resummation effects are expected. The cut should also be sufficiently10601

high that the jet pT cut introduces a negligible bias.10602

– 60 GeV < pH
T < 120 GeV: This is the resulting intermediate bin between the low and high10603

pH
T regions. The lower cut here is high enough that this bin can be safely treated as a hard10604

H + j system in the theoretical description.10605

– 120 GeV < pH
T < 200 GeV: The boosted selection in H ! ⌧⌧ contributes to the high pH

T10606

region. Defining a separate bin avoids large extrapolations for the H ! ⌧⌧ contribution.10607

For Nj = 2, this bin likely provides a substantial part of the gluon-fusion contribution in the10608

hadronic V H selection.10609

– pH
T > 200 GeV: Beyond the top-quark mass, the top-quark loop gets resolved and top-quark10610

mass effects become relevant. Splitting off the high-pH
T region ensures the usability of the10611

heavy-top expansion for the lower-pH
T bins. At the same time, the high pH

T bin in principle10612

offers the possibility to distinguish a pointlike ggH vertex induced by heavier BSM particles10613

in the loop from the resolved top-quark loop.10614

At intermediate stages, all lower three pH
T bins, or any two adjacent bins, can be merged. Alterna-10615

tively or in addition the Nj = 1 and Nj � 2 bins can be merged by individual analyses as needed, and10616

potentially also when the combination is performed at an intermediate stage.10617
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Example EFT fit

17

J. Ellis, V. Sanz and T. You combine precision electroweak data with Higgs and  
 anomalous coupling constraints to fit EFT parameters in the SILH basis 

Fit performed in steps:  
 (1) neglect interactions that do not affect Higgs and electroweak physics 
  (21 four-fermion operators and 3 gluon self-couplings)  
 (2) use high-precision electroweak data to constrain 8 operators 
 (3) use triple-gauge-coupling and Higgs data to constrain 9 more
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq]ij

i
v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m2
W

p
2mei

mej

v
¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g0

m2
W

p
2mei

mej

v
¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m2
W

p
2mui

muj

v q̄iH̃�µ⌫T aujGa
µ⌫

[OuW ]ij
g

m2
W

p
2mui

muj

v q̄i�kH̃�µ⌫ujW k
µ⌫

[OuB ]ij
g0

m2
W

p
2mui

muj

v q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
gs

m2
W

p
2mdi

mdj

v q̄iH�µ⌫T adjGa
µ⌫

[OdW ]ij
g

m2
W

p
2mdi

mdj

v q̄i�kH�µ⌫djW k
µ⌫

[OdB ]ij
g0

m2
W

p
2mdi

mdj

v q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq]ij

i
v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
i

v2 ūi�µujH† !DµH
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II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:
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II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
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Higgs boson production
Measurements of Higgs boson cross sections in Run 1 can be used in EFT fits
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MadGraph [90] interfaced to Pythia8 in ATLAS and MadGraph5 aMC@NLO

interfaced to Pythia6.4 in CMS.

• finally, bbH production contributes approximately 1% to the total Higgs boson cross

section in the SM. It is studied using Pythia8 in ATLAS and Pythia6.4 and Mad-

Graph5 aMC@NLO in CMS, for the categories most sensitive to this production

process in the various channels. Given that the selection efficiencies of bbH produc-

tion are similar to those of the ggF process, the latter process is used to model the

bbH signal for all decay channels, with an approximate correction to account for the

difference in overall efficiency.

Table 3 summarises the event generators used by ATLAS and CMS for the
√
s =

8TeV data analyses. For each production process and decay mode, the cross section

and branching fraction used correspond to the higher-order state-of-the-art theoretical

calculations, namely the values given in tables 1 and 2.

Furthermore, the pT distribution of the Higgs boson in the ggF process, which in many

cases affects categorisation and selection efficiencies, is reweighted to match the HRes2.1

prediction [45–47], which accounts for next-to-next-to-leading-order (NNLO) and next-to-

next-to-leading-logarithmic (NNLL) QCD corrections. In addition, the Higgs boson pT
spectrum in gg → H events with two or more jets is reweighted to match the prediction

of the Powheg MiNLO H+2-jet generator [91]. This consistent treatment by the two

experiments of the most prominent theoretical aspects of Higgs boson production and

decay is quite important since all theoretical uncertainties in the various signal processes

described in table 3 are treated as correlated for the combination (see section 3). The

impact of using different generators for the less sensitive channels is negligible compared

to their dominant sources of uncertainty.

2.3 Signal strengths

The signal strength µ, defined as the ratio of the measured Higgs boson rate to its SM

prediction, is used to characterise the Higgs boson yields. For a specific production process

and decay mode i → H → f , the signal strengths for the production, µi, and for the decay,

µf , are defined as

µi =
σi

(σi)SM
and µf =

Bf

(Bf )SM
. (2.1)

Here σi (i = ggF,VBF,WH,ZH, ttH) and Bf (f = ZZ,WW, γγ, ττ, bb, µµ) are respec-

tively the production cross section for i → H and the decay branching fraction for H → f .

The subscript “SM” refers to their respective SM predictions, so by definition, µi = 1

and µf = 1 in the SM. Since σi and Bf cannot be separated without additional assump-

tions, only the product of µi and µf can be measured experimentally, leading to a signal

strength µf
i for the combined production and decay:

µf
i =

σi · Bf

(σi)SM · (Bf )SM
= µi · µf . (2.2)
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Figure 12. Best fit results for the production signal strengths for the combination of ATLAS and
CMS data. Also shown are the results from each experiment. The error bars indicate the 1σ (thick
lines) and 2σ (thin lines) intervals. The measurements of the global signal strength µ are also shown.

Higgs boson decays are also studied with six independent signal strengths, one for each

decay channel included in the combination, assuming that the Higgs boson production cross

sections are the same as in the SM. Unlike the production signal strengths, these decay-

based signal strengths are independent of the collision centre-of-mass energy and therefore

the
√
s = 7 and 8TeV data sets can be combined without additional assumptions. Table 13

and figure 13 present the best fit results for the combination of ATLAS and CMS, and

separately for each experiment (the results for µµµ are only reported in table 13). The

p-value of the compatibility between the data and the SM predictions is 75%.
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Figure 13. Best fit results for the decay signal strengths for the combination of ATLAS and CMS
data (the results for µµµ are reported in table 13). Also shown are the results from each experiment.
The error bars indicate the 1σ (thick lines) and 2σ (thin lines) intervals.

5.3 Boson- and fermion-mediated production processes

The Higgs boson production processes can be associated with Higgs boson couplings to ei-

ther fermions (ggF and ttH) or vector bosons (VBF, WH, and ZH). Potential deviations

of these couplings from the SM predictions can be tested by using a parameterisation with

two signal strengths for each decay channel f : µf
F = µf

ggF+ttH for the fermion-mediated

production processes and µf
V = µf

VBF+V H for the vector-boson-mediated production pro-

cesses. The branching fraction cancels in the ratio µf
V /µ

f
F that can be formed for each

Higgs boson decay channel. Two fits are performed for the combination of ATLAS and

CMS, and also separately for each experiment. The first is a ten-parameter fit of µf
F and µf

V

for each of the five decay channels, while the second is a six-parameter fit of µV /µF and

µf
F for each of the five decay channels.
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Figure 14. Negative log-likelihood contours at 68% CL in the (µf
ggF+ttH , µf

VBF+V H) plane for the
combination of ATLAS and CMS, as obtained from the ten-parameter fit described in the text for
each of the five decay channels H → ZZ, H → WW , H → γγ, H → ττ , and H → bb. The best fit
values obtained for each of the five decay channels are also shown, together with the SM expectation.

5.4 Search for mass-degenerate states with different coupling structures

One important assumption underlying all the results reported elsewhere in this paper is

that the observations are due to the presence of a single particle with well defined mass that

has been precisely measured [22]. This section addresses the case in which the observed

signal could be due to the presence of two or more particles with similar masses, such

that they cannot be resolved within the current precision of the mass measurements in the

different channels. Several BSM models predict, for example, a superposition of states with

indistinguishable mass values [122–125], possibly with different coupling structures to the

SM particles. With such an assumption, it may be possible to distinguish between single

and multiple states by measuring the cross sections of individual production processes

– 38 –

Production Decay
Production and decay

18

JHEP 08 (2016) 045



Gauge boson self-couplings

5 April 2016 C. Hays, Oxford University 30

Direct gauge-boson self-couplings
s-channel multiboson production

t-channel vector boson fusion 

Vector boson scattering 

Triple-gauge couplings: 
Dimension 6 operators

Quartic-gauge couplings: 
Dimension 8 operators

5 April 2016 C. Hays, Oxford University 30

Direct gauge-boson self-couplings
s-channel multiboson production

t-channel vector boson fusion 

Vector boson scattering 

Triple-gauge couplings: 
Dimension 6 operators

Quartic-gauge couplings: 
Dimension 8 operators

s-channel t-channel

Historical 
parameterization

Relation to  
EFT basis

only determined by self-couplings

19

also affect Higgs production & decay

1610.07922,  
Sec. III.2.1



WW production
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Figure 1. (a) The SM tree-level Feynman diagram for WW production through the qq initial
state in the t-channel. (b) The corresponding tree-level diagram in the s-channel, which contains
the WWZ and WWγ TGC vertices. (c) The gluon fusion process, which is mediated by a quark
loop. (d) The Higgs boson production process through gluon fusion and the subsequent decay of
the Higgs boson to WW .

by the CMS Collaboration [13, 14]. Limits on anomalous couplings have been reported

in these publications as well and, in several cases, are comparable to the most stringent

aTGC limits set by the LEP experiments [8].

The present analysis uses a data sample with an integrated luminosity of 20.3 fb−1 at a

centre-of-mass energy of
√
s = 8 TeV. The total and fiducial WW production cross sections

are measured using W → eν and W → µν decays. Furthermore, measurements of differen-

tial cross sections are presented and limits on anomalous triple-gauge-boson couplings are

reported.

2 Analysis overview

The production of WW signal events takes place dominantly through quark-antiquark t-

channel scattering and s-channel annihilation, denoted by qq̄ → W+W−,1 and are shown

in figures 1(a) and 1(b), where the latter process involves a triple-gauge-boson vertex. In

addition, W boson pairs can be produced via gluon fusion through a quark loop; these

are the non-resonant gg → W+W− and the resonant Higgs boson gg → H → W+W−

production processes in figures 1(c) and 1(d). All of these are considered as signal processes

in this analysis.

The WW candidate events are selected in fully leptonic decay channels, resulting in

final states of e±
(−)
νeµ∓(−)

νµ, e+νee−ν̄e and µ+νµµ−ν̄µ. In the following, the different final

states are referred to as eµ, ee and µµ.

Backgrounds to these final states originate from a variety of processes. Top-quark pro-

duction (tt̄ and the associated production of a single top quark and a W boson) also results

in events with W pairs. In this case, the W bosons are, however, accompanied by b-quarks

that hadronise into jets. To enhance the purity of the signal candidates, events are rejected

if any jets above a certain transverse momentum threshold are present in the final state.

1In the following, qq̄ → W+W− is taken to also include qg initial states contributing to t-channel and

s-channel WW production.
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pleadT [GeV] 25–75 75–150 150–250 250–350 350–1000

SFEW < 1% −4% −10% −16% −24%

δSFEW 0.1% <0.5% 2% 4% 7%

Table 10. Size of the next-to-leading-order EWK correction scale factor [36], SFEW, and its
systematic uncertainty (δSFEW) in each bin of pleadT .
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Figure 11. The leading lepton transverse momentum, pleadT , for eµ final states is compared for
data and MC-generated events using different arbitrary values for aTGC parameters (left). The
detector-level distributions are shown using values of aTGC parameters corresponding to the upper
bounds of the observed 95% confidence interval (right). The aTGC parameters are defined in the no
constraints scenario, and the form-factor scale is set to be infinity. The next-to-leading-order EWK
correction scale factors from table 10 have been applied here. Except for the anomalous coupling
parameter under study, all others are set to zero.

plot shows the predicted shapes with the values of aTGC parameters corresponding to the

upper bounds of the observed 95% confidence interval.

To derive the confidence interval for some specific anomalous coupling parameters in

any of the described scenarios, the other parameters are set to their SM values. Table 11

gives the expected and observed 95% confidence interval for each of the anomalous coupling

parameters defined in the no constraints, LEP, HISZ and Equal Couplings scenarios. The

limits are obtained with both Λ = ∞ and Λ = 7 TeV. A form-factor scale of 7 TeV

is chosen as the largest value allowed by the unitarity requirement [86] for most aTGC

parameters. The confidence intervals for the effective field theory approach are given

in table 12. Figure 12 shows the expected and observed limits at 95% confidence level

(C.L.), in red and black respectively, and the theoretical constraint due to the unitarity

requirement (shown as blue dashed lines) as a function of form-factor scales from Λ = 2 TeV

to Λ = 10 TeV. The largest value of form-factor scales that can preserve unitarity is ∼7–

9 TeV for most aTGC parameters, while it is only about 3 TeV for ∆gZ1 . All observed

limits are more stringent than the expected limits because the data distribution falls more

steeply than expected and a deficit of events is observed for the highest pleadT bins.

The limits in the plane of two coupling parameters are shown for the no constraints

and LEP scenarios in figure 13 and figure 14, respectively. Further limits obtained for the
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Scenario Parameter Expected Observed Expected Observed

Λ = ∞ Λ = 7 TeV

No constraints

scenario

∆gZ1 [−0.498, 0.524] [−0.215, 0.267] [−0.519, 0.563] [−0.226, 0.279]

∆kZ [−0.053, 0.059] [−0.027, 0.042] [−0.057, 0.064] [−0.028, 0.045]

λZ [−0.039, 0.038] [−0.024, 0.024] [−0.043, 0.042] [−0.026, 0.025]

∆kγ [−0.109, 0.124] [−0.054, 0.092] [−0.118, 0.136] [−0.057, 0.099]

λγ [−0.081, 0.082] [−0.051, 0.052] [−0.088, 0.089] [−0.055, 0.055]

LEP

∆gZ1 [−0.033, 0.037] [−0.016, 0.027] [−0.035, 0.041] [−0.017, 0.029]

∆kZ [−0.037, 0.035] [−0.025, 0.020] [−0.041, 0.038] [−0.027, 0.021]

λZ [−0.031, 0.031] [−0.019, 0.019] [−0.033, 0.033] [−0.020, 0.020]

HISZ
∆kZ [−0.026, 0.030] [−0.012, 0.022] [−0.028, 0.033] [−0.013, 0.024]

λZ [−0.031, 0.031] [−0.019, 0.019] [−0.033, 0.034] [−0.020, 0.020]

Equal Couplings
∆kZ [−0.041, 0.048] [−0.020, 0.035] [−0.045, 0.052] [−0.021, 0.037]

λZ [−0.030, 0.030] [−0.019, 0.019] [−0.034, 0.033] [−0.020, 0.020]

Table 11. The expected and observed 95% confidence intervals for the anomalous coupling pa-
rameters defined in the no constraints scenario, LEP, HISZ and Equal Couplings scenarios. The
results are shown with Λ = ∞ and Λ = 7 TeV.

Scenario Parameter Expected [TeV−2] Observed [TeV−2]

EFT

CWWW /Λ2 [−7.62, 7.38] [−4.61, 4.60]

CB/Λ2 [−35.8, 38.4] [−20.9, 26.3]

CW /Λ2 [−12.58, 14.32] [−5.87, 10.54]

Table 12. The expected and observed 95% confidence intervals for the EFT approach.

Equal Couplings and HISZ scenarios are shown in figure 15. Finally, the 95% confidence-

level contours for linear combinations of aTGC parameters defined in the effective field

theory approach are shown in figure 16.

Due to the increased integrated luminosity and the higher centre-of-mass energy, the

new limits are more stringent by up to 50% than those previously published by the ATLAS

Collaboration using data taken at
√
s = 7 TeV [12]. The constraints derived in the LEP

scenario are similar to the combined results of the LEP experiments and in a few cases the

derived limits exceed the bounds placed by LEP. The 95% confidence-level limits on ∆gZ1
obtained in this analysis range from −0.016 to 0.027 whilst the limits from LEP cover values

from −0.021 to 0.054. The 95% confidence intervals on CWWW /Λ2 and CB/Λ2 derived in

this analysis are similar, or up to 20-30% more restrictive than those obtained by the CMS

Collaboration in ref. [14], which derives limits for the effective field theory approach only

and uses the invariant dilepton mass distribution, mℓℓ. The limits derived on CW /Λ2 cover

a complementary range around zero compared to the bounds from CMS, they have similar

numerical values but opposite sign. Since the effects of EFT operators on distributions

depend primarily on their absolute magnitude and not on their sign, these differences

between the ATLAS and CMS constraints on CW /Λ2 can be considered insignificant.
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WW production
In a combined fit need to consider coefficients that affect both gauge-boson 

self-couplings and gauge-boson couplings to the Higgs boson

43

Profiled CRs

in (b, c, d) have

Poisson terms in L

Nonprofiled CRs

in (e, f, g) have no

Poisson term in L

has Poisson

SR shown in (a)

terms in L

1.8 2.8

region
Unused DYSR WW CR WW

VR

Apply �
dy

to N
dy

Apply �V V to NV V

1 2 3 40 5 6+
nj

1 2 3 4 5 6+0

(f) nb � 1 data

0 �1

SR SR
CR

nb

Q`1 ·Q`2

Top CR is inclusive njSR 0j

More looseMore strict

(a) Signal region for nj =0, eµ category

1

Regions (a-d) in fit

(e-g) not in fit

(b) WW

(g) Wj

Apply �top to Ntop Apply �2
to �top

Apply �WW to NWW

(c) Drell-Yan (d) V V

(e) Top quark

NWj in bins b

lepton isolation

V V CR

Compute �=
↵0
0j

↵0
Nj

SR Wj CR

3.14
��``

bin 2 · · ·bin 1 bin b

m
t

[GeV]

80 130

m`` [GeV]
10 30 55 110

V V

rest

rest

topV V

Higgs

Wj

WW

WW

rest

WW

DY

DY
Wj

WW V V

rest

top top

DY

top

FIG. 28. Simplified illustration of the fit regions for nj =0, eµ category. The figure in (a) is the variable-binned m
t

distribution
in the signal region for a particular range of m`` and p `2

t

specified in Table XXI; the m
t

bins are labeled b=1, 2, . . .; the
histograms are stacked for the five principal background processes—WW , top, Misid. (mostly Wj), V V , DY (unlabeled)—and
the Higgs signal process. The figures in (b, c, d) represent the distributions that define the various profiled control regions used
in the fit with a corresponding Poisson term in the likelihood L. Those in (e, f, g) represent the nonprofiled control regions
that do not have a Poisson term in L, but determine parameters that modify the background yield predictions. A validation
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Measurement of H→WW constrains WW background with data 
Correlations undetermined in EFT fit
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FIG. 35. Postfit combined transverse mass distributions
for nj  1 and for all lepton-flavor samples in the 7 and
8TeV data analyses. The plot in (b) shows the residuals
of the data with respect to the estimated background com-
pared to the expected distribution for an SM Higgs boson
with mH =125GeV; the error bars on the data are statisti-
cal (

p
Nobs). The uncertainty on the background (shown as

the shaded band around 0) is at most about 25 events per
m

t

bin and partially correlated between bins. Background
processes are scaled by postfit normalization factors and the
signal processes by the observed signal strength µ from the
likelihood fit to all regions. Their normalizations also include
e↵ects from the pulls of the nuisance parameters.

nique [23] that improves background rejection. An
improved definition of missing transverse momentum,
pmiss

t

based on tracks, is introduced in the analysis
since it is robust against pile-up and provides im-
proved resolution with respect to the true value of
missing transverse momentum.

Signal acceptance is increased by 75% (50%) in the
nj =0 (1) category. This is achieved by lowering the p `2

t

threshold to 10GeV. Dilepton triggers are included in ad-
dition to single lepton triggers, which allows reduction of
the p `1

t

threshold to 22GeV. The signal kinematic region
in the nj  1 categories is extended from 50 to 55GeV.
The total signal e�ciency, including all signal categories
and production modes, at 8TeV and for a Higgs boson
mass of 125.36GeV increased from 5.3% to 10.2%.

The methods used to estimate nearly all of the back-
ground contributions in the signal region are improved.
These improvements lead to a better understanding of
the normalizations and thus the systematic uncertainties.
The rejection of the top-quark background is improved
by applying a veto on b-jets with p

t

> 20GeV, which is
below the nominal 25GeV threshold in the analysis. A
new method of estimating the jet b-tagging e�ciency is
used. It results in the cancellation of the b-tagging uncer-
tainties between the top-quark control region and signal
regions in the nj =1 categories. The Z/�⇤ ! ⌧⌧ back-
ground process is normalized to the data in a dedicated
high-statistics control region in the nj  1 and nj � 2
ggF-enriched categories. The V V backgrounds are nor-
malized to the data using a new control region, based
on a sample with two same-charge leptons. Introducing
this new control region results in the cancellation of most
of the theoretical uncertainties on the V V backgrounds.
The multijet background is now explicitly estimated with
an extrapolation factor method using a sample with two
anti-identified leptons. Its contribution is negligible in
the nj  1 category, but it is at the same level as W+jets
background in the nj � 2 ggF-enriched category. A large
number of improvements are applied to the estimation of
the W+jets background, one of them being an estima-
tion of the extrapolation factor using Z+jets instead of
dijet data events.
Signal yield uncertainties are smaller than in the pre-

vious analysis. The uncertainties on the jet multiplicity
distribution in the ggF signal sample, previously esti-
mated with the Stewart-Tackmann technique [80], are
now estimated with the jet-veto-e�ciency method [79].
This method yields more precise estimates of the signal
rates in the exclusive jet bins in which the analysis is
performed.
The nj � 2 sample is divided into VBF- and ggF-

enriched categories. The BDT technique, rather than a
selection-based approach, is used for the VBF category.
This improves the sensitivity of the expected VBF results
by 60% relative to the previously published analysis. The
ggF-enriched category is a new subcategory that targets
ggF signal production in this sample.
In summary, the analysis presented in this paper brings

a gain of 50% in the expected significance relative to the
previous published analysis [5].

IX. RESULTS AND INTERPRETATIONS

Combining the 2011 and 2012 data in all categories,
a clear excess of signal over the background is seen in
Fig. 35. The profile likelihood fit described in Sec. VIIB
is used to search for a signal and characterize the pro-
duction rate in the ggF and VBF modes. Observation
of the inclusive Higgs boson signal, and evidence for the
VBF production mode, are established first. Following
that, the excess in data is characterized using the SM
Higgs boson as the signal hypothesis, up to linear rescal-
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Impact of gauge self-couplings

LHC Higgs

LHC Higgs + dibosons

Most of the diboson sensitivity comes from the high Q2 part of the 

distribution, where interference with SM small  

Open question whether dimension-8 terms could be of the same order 

with |ℳd6|2/Λ4 

22
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Figure 4: Recast of the CMS analysis of W+W� ! l⌫l⌫ process at
p
s = 8 TeV and

19.4 fb�1 [17]. Bounds on the anomalous triple gauge couplings obtained expressing the

signal strengths in each bin up to quadratic (red-filled) and linear (red-dashed) order in

aTGC, respectively. No cuts on truth mWW are applied.

the dependence of the limits on the EFT cut is small up to mmax

WW ' 1 TeV and becomes

important only for lower cuto↵s. This implies that the bounds on aTGC obtained from

the 8 TeV WW searches without any cuto↵ o↵er approximately valid constraints for new

physics scenarios with mass scales above ⇠ 1 TeV, as long as dim-8 contributions can be

neglected. Interestingly enough, even for a relatively small mmax

WW , the obtained limits are

rather competitive with respect to those from the combined fit to Higgs and LEP2 data [15].

Finally, it is worth mentioning that the aTGC bounds that we obtain without any mWW

cut are in a good agreement with the limits quoted by the experimental collaboration [17]

and by Ref. [23].

In Fig. 4 we compare the sensitivities obtained from recasting the CMS 8 TeV WW

analysis by including (red-filled) or excluding (red-dashed) quadratic terms in dim-6 oper-

ators. We observe that the limits are much weakened when only linear terms are included,

in agreement with the discussion of Sec. 2.1. Therefore, in BSM scenarios where quadratic

dim-6 and linear dim-8 terms are of the same size (following the general EFT counting),

the latter are expected to generate similar changes in the aTGC bounds. This implies

that the aTGC bounds derived by including quadratic dim-6 terms largely overestimate

the constraints for such BSM scenarios. Let us also note that non-included QCD NLO

corrections might change qualitatively the interference terms, since the LO terms happen

to be suppressed [40]. Therefore, the result of the linear fit in Fig. 4 should be taken with

caution, but the main message (large sensitivity to quadratic corrections) is not a↵ected

by this caveat.

This is unlike the limits from Higgs+LEP2 combined dataset [15] where the linearized

fit (shown in blue) leads to similar results as the one including quadratic corrections. In fact,

the observables of this analysis (Higgs signal strengths and e+e� ! W+W� di↵erential

– 12 –

without |ℳd6|2/Λ4 
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Fit to Higgs & TGC measurements

Constrain 6 EFT parameters in global fit 
(3 additional parameters if constrained individually) 

14 globally constrained parameters when combined 
with precision electroweak constraints
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Figure 6. The marginalised 95% CL ranges for the dimension-6 operator coefficients obtained by
combining the LHC signal-strength data with the ATLAS 8-TeV TGC data (purple bars), the CMS
7- and 8-TeV TGC measurements (blue bars), and their combination (red bars). Note that c̄γ,g are
shown ×100, so for these coefficients the upper axis should therefore be read ×10.

likelihood (shown as a dashed blue line) fluctuates stochastically over a range larger than

that displayed. On the other hand, the Higgs constraints are more important for c̄HW ,

c̄HB and c̄g, whereas the TGC and Higgs constraints are of comparable importance for the

other coefficients.

The results of our fits are summarised in figure 8. The individual 95% CL constraints

obtained by switching one coefficient on at a time are shown as green bars. The other

lines are the marginalised 95% ranges obtained using the LHC signal-strength data in

combination with the kinematic distributions for associated H + V production measured

by ATLAS and D0 (blue bars), in combination with the LHC TGC data (red lines), and

in combination with both the associated production and TGC data (black bars). We see

again that the LHC TGC constraints are the most important for c̄W and c̄3W , whereas the

Higgs constraints are more important for c̄HW , c̄HB and c̄g. Our numerical results for the

95% CL ranges for these coefficients are shown alongside the operator definitions in table 2.

Results for the coefficients cb, ct and cH are shown in the case of one-by-one constraints,

but once other Higgs-gauge bosons are included in the global fit the sensitivities to them

is reduced to current limits on h → bb̄ in associated production and tt̄h.

4 Application to the Two-Higgs Doublet Model

We now discuss an example of the application of our constraints to a specific ultra-violet

(UV) completion of the effective field theory. The case of a singlet scalar and stops con-

tributing to dimension-6 operators was recently considered in [129]. Here we briefly look at

applying our constraints to the 2HDM scenario, which is worth further investigation [130].
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W boson mass in the SM

24

Mass completely predicted given three measured inputs:

Sensitive to loop corrections from e.g. top quarks, Higgs bosons, and stop quarks

previous measurements by the Tevatron experiments,
improve the uncertainty on the combined Tevatron MW

value to 16 MeV. The combination of this measurement
with the LEP average for MW further reduces the uncer-
tainty to 15 MeV. The substantial improvement in the
experimental precision on MW leads to tightened indirect
constraints on the mass of the SM Higgs boson. The direct
measurements of the mass of the Higgs boson at the LHC
[1] agree, at the level of 1.3 standard deviations, with these
tightened indirect constraints [37]. This remarkable suc-
cess of the standard model is also shown in Fig. 2, which
includes the new world average W-boson mass, the
Tevatron average top-quark mass measurement [5], and
shows consistency among these with the calculation of
MW [6], assuming Higgs-boson mass determinations
from the ATLAS and CMS experiments [1].
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FIG. 1 (color online). W-boson mass determinations from the
CDF and D0 Run I (1989 to 1996) and Run II (2001 to 2009)
measurements, the new Tevatron average, the LEP combined
result [29], and the world average obtained by combining the
Tevatron and LEP averages assuming no correlations between
them. The world-average uncertainty (15 MeV) is indicated by
the shaded band.
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FIG. 2 (color online). The most recent world average of MW is
displayed along with the mass of the top quark mt [5] at
68% C.L. by area. The diagonal line is the indirect prediction
ofMW as a function ofmt, in the SM given by Ref. [6], assuming
the measurements of the ATLAS and CMS [1] experiments of
the candidate Higgs-boson masses of 126.0 GeV and 125.3 GeV
respectively.
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For Δr=0, MW = 79 964 MeV

We describe a measurement of the W boson mass mW using 200 pb!1 of
ffiffiffi
s

p ¼ 1:96 TeV p !p collision

data taken with the CDF II detector. With a sample of 63 964 W ! e! candidates and 51 128 W ! "!
candidates, we measure mW ¼ ½80:413$ 0:034ðstatÞ $ 0:034ðsysÞ ¼ 80:413$ 0:048' GeV=c2. This is

the single most precise mW measurement to date. When combined with other measured electroweak

parameters, this result further constrains the properties of new unobserved particles coupling to W and Z
bosons.
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I. INTRODUCTION

The discovery of the W and Z bosons in 1983 [1]
confirmed a central prediction of the unified model of
electromagnetic and weak interactions [2]. Initial W and
Z boson mass measurements verified the tree-level predic-
tions of the theory, with subsequent measurements probing
the predicted Oð3 GeV=c2Þ [3,4] radiative corrections to
the masses. The current knowledge of these masses and
other electroweak parameters constrains additional radia-
tive corrections from unobserved particles such as the
Higgs boson or supersymmetric particles. These con-
straints are however limited by the precision of the mea-
suredW boson mass mW , making improved measurements
of mW a high priority in probing the masses and electro-
weak couplings of new hypothetical particles. We describe
in this article the single most precise mW measurement [5]
to date.

The W boson mass can be written in terms of other
precisely measured parameters in the ‘‘on-shell’’ scheme
as [4]

m2
W ¼ @3

c

#$EMffiffiffi
2

p
GFð1!m2

W=m
2
ZÞð1! "rÞ

; (1)

where $EM is the electromagnetic coupling at the renor-
malization energy scale Q ¼ mZc

2, GF is the Fermi weak
coupling extracted from the muon lifetime, mZ is the Z
boson mass, and "r includes all radiative corrections.
Fermionic loop corrections increase the W boson mass
by terms proportional to lnðmZ=mfÞ for mf ( mZ [4],
while the loop containing top and bottom quarks (Fig. 1)
increases mW according to [6]

"rtb ¼
c@3 !3GFm

2
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8
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b

! 2m2
t m

2
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bÞ
#
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where the second and third terms can be neglected since
mt * mb. Higgs loops (Fig. 2) decrease mW with a con-
tribution proportional to the logarithm of the Higgs mass
(mH). Contributions from possible supersymmetric parti-
cles are dominated by squark loops (Fig. 3) and tend to
increase mW . Generally, the lighter the squark masses and
the larger the squark weak doublet mass splitting, the larger
the contribution to mW . The total radiative correction from
supersymmetric particles can be as large as several hun-
dred MeV=c2 [7].
Table I [8] shows the change in mW forþ1% changes in

the measured standard model input parameters and the
effect of doubling mH from 100 GeV=c2 to 200 GeV=c2.
In addition to the listed parameters, a variation of
$1:7 MeV=c2 on the predicted mW arises from two-loop
sensitivity to $s, e.g. via gluon exchange in the quark loop
in Fig. 1. Theoretical corrections beyond second order,
which have yet to be calculated, are estimated to affect
the mW prediction by $4 MeV=c2 [8].
The uncertainties on themW prediction can be compared

to the 29 MeV=c2 uncertainty on the world average from

+W +W

t

b

FIG. 1. The one-loop contribution to the W boson mass from
top and bottom quarks.

WW
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FIG. 2. Higgs one-loop contributions to the W boson mass.
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FIG. 3. One-loop squark contributions to the W boson mass.
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in Fig. 1. Theoretical corrections beyond second order,
which have yet to be calculated, are estimated to affect
the mW prediction by $4 MeV=c2 [8].
The uncertainties on themW prediction can be compared

to the 29 MeV=c2 uncertainty on the world average from

+W +W

t

b

FIG. 1. The one-loop contribution to the W boson mass from
top and bottom quarks.
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FIG. 2. Higgs one-loop contributions to the W boson mass.
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FIG. 3. One-loop squark contributions to the W boson mass.
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Figure 1. Results of a χ2 analysis of ST parameters in EWPTs using the expansion formalism
of [106]. The dotted, dashed and solid contours denote the regions allowed at the 68%, 95%, and
99% CL, respectively, which may be compared with those of [109].

while those that affect the leptonic and hadronic Z-pole measurements directly through

modifications to the gauge boson-fermion couplings are

Ldim-6 ⊃
∑

fL

⎛

⎝ c̄fL
v2

OfL +
c̄(3)fL

v2
O(3)

fL

⎞

⎠+
∑

fR

c̄fR
v2

OfR .

The sum is over the left-handed lepton and quark doublets, fL ≡ LL, QL, and right-handed

lepton and quark singlets, fR ≡ eR, uR, dR, and we assume minimal flavour violation. The

Fermi constant GF defined by the muon lifetime, which we take as an input observable, is

modified by c̄(3)fL
as well as the four-fermion operator O(3)l

LL :

Ldim-6 ⊃
c̄(3)lLL

v2
O(3)l

LL .

We note that the coefficients are defined such that

c̄ ≡ c
M2

Λ2
, (2.6)

where M ≡ v,mW depending on the operator normalization, and c ∼ g2NP is a coefficient

proportional to a new physics coupling gNP defined at the scale M . These are related to

the coefficients at the new physics scale through RGE equations [110–117].

These operators form a redundant basis that is reducible through field redefinitions,

or equivalently the equations of motion, that have no effect on the S-matrix [44–49]. Fol-

lowing [88], we may eliminate the operators OLL ,O
(3)
LL

that affect the left-handed leptonic

Z couplings, and the operators O2W ,O2B,O2G corresponding to the Y,W and Z parame-

ters [101, 102] in the generalization of the universal oblique parameters.6 The coefficients

6The U, V and X parameters correspond to higher-dimensional operators.
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Z boson forward-backward asymmetry

26

Z boson has mix of vector and axial couplings to each fermion 
Determined by SU(2)L and U(1)Y coupling strengths  

Can measure this mix through the angular distribution of fermions produced by Z decay 
Measure fraction of final-state fermions along the direction of the initial-state fermion

where l and q denote the lepton and quark, respectively.
For the Drell-Yan process, the relevant quarks are pre-
dominantly the light quarks u, d, or s. The coupling factor
has an enhanced sensitivity to sin2 θW at the lepton-Z
vertex: for a sin2 θW value of 0.223, a 1% variation in
sin2 θW changes the lepton factor (containing Ql) by about
8%, and it changes the quark factor (containing Qq) by
about 1.5% (0.4%) for the u (d or s) quark. Electroweak
radiative corrections do not alter significantly this Born-
level interpretation. Loop and vertex electroweak radiative
corrections are multiplicative form-factor corrections to the
couplings that change their values by a few percent [5].
The l− forward-backward asymmetry in cosϑ is

defined as

AfbðMÞ ¼ σþðMÞ − σ−ðMÞ
σþðMÞ þ σ−ðMÞ

¼ 3

8
A4ðMÞ; ð2Þ

where M is the lepton-pair invariant mass, σþ is the total
cross section for cosϑ ≥ 0, and σ− is the total cross section
for cosϑ < 0. Figure 2 shows the typical dependence of the
asymmetry as a function of the lepton-pair invariant mass
from a Drell-Yan QCD calculation. The offset of Afb from
zero at M ¼ MZ is related to sin2 θW . Away from the Z
pole, the asymmetry is dominated by the component from
γ% − Z interference, whose cross section is proportional to
ðM2 −M2

ZÞ=M2, and the asymmetries in these regions are
primarily related to the flux of partons. Consequently, the
asymmetry distribution is sensitive to both sin2 θW and the
parton distribution functions (PDF) of the proton.

The sin2 θlepteff coupling is derived from the measurement
of AfbðMÞ and predictions of AfbðMÞ for various input
values of sin2 θW . Electroweak and QCD radiative correc-
tions are included in the predictions of AfbðMÞ, with the
electroweak radiative corrections derived from an approach
adopted at LEP [18].

III. ENHANCED QCD PREDICTIONS

Drell-Yan cross-section calculations with QCD radiation
do not typically include electroweak radiative corrections.
However, the QCD, quantum electrodynamic, and weak-
interaction corrections can be organized to be individually
gauge invariant so that they are applied as independent
components.
Quantum electrodynamic (QED) radiative corrections

that result in final-state photons are the most important
for measurements derived from the Drell-Yan process, and
they are included in the physics and detector simulation
described in Sec. VI. The effects of QED radiation are
removed from the measured distribution of Afb using the
simulation so that the measurement can be directly com-
pared with QCD calculations of Afb that do not include it.
The Drell-Yan process and the production of quark pairs

in high-energy eþe− collisions are analogous processes:
qq̄ → eþe− and eþe− → qq̄. At the Born level, the process
amplitudes are of the same form except for the interchange
of the electrons and quarks. Electroweak radiative correc-
tions, calculated and extensively used for precision fits of
LEP-1 and SLD measurements to the standard model
[11,12], are therefore applicable to the Drell-Yan process.
In the remainder of this section, the technique used to

incorporate independently calculated electroweak radiative
corrections for eþe− collisions into existing QCD calcu-
lations for the Drell-Yan process is presented.

A. Electroweak radiative corrections

The effects of virtual electroweak radiative corrections
are incorporated into Drell-Yan QCD calculations via
form factors for fermion-pair production according to
eþe− → Z → ff̄. The Z-amplitude form factors are calcu-
lated by ZFITTER 6.43 [18], which is used with LEP-1 and
SLD measurement inputs for precision tests of the standard
model [11,12]. Corrections to fermion-pair production via a
virtual photon include weak-interaction W-boson loops
in the photon propagator, and Z-boson propagators at
fermion-photon vertices; these corrections are not gauge
invariant except when combined with their gauge counter-
parts in the Z amplitude. The ZFITTER weak and QED
corrections are organized to be separately gauge invariant.
Consequently, weak corrections to fermion-pair production
via the virtual photon are included through the Z-amplitude
form factors. ZFITTER uses the on-shell scheme [3], where
particle masses are on-shell, and

)2cM (GeV/

40 60 80 100 120 140 160 180 200

fb
A

-0.4

-0.2

0

0.2

0.4

0.6

d

u
d + u

FIG. 2. Typical dependence of Afb as a function of the lepton-
pair invariant mass M. The label uþ d denotes the overall
asymmetry, and the labels u and d denote the contribution to the
overall asymmetry from quarks with charges 2=3 and −1=3,
respectively. The contribution of quarks categorized by the u or d
label is ðσþq − σ−q Þ=σ, where q ¼ u or d, σþð−Þ their forward
(backward) cross section, and σ the total cross section from all
quarks. The vertical line is at M ¼ MZ.
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on μþμ− pairs yields sin2 θlepteff ¼ 0.23221# 0.00046. This result, when interpreted within the
specified context of the standard model assuming sin2 θW ¼ 1 −M2

W=M
2
Z and that the W- and Z-boson

masses are on-shell, yields sin2 θW ¼ 0.22400# 0.00045, or equivalently a W-boson mass of
80.328# 0.024 GeV=c2.

DOI: 10.1103/PhysRevD.93.112016

I. INTRODUCTION

In this paper, the angular distribution of charged leptons
(l#) from the Drell-Yan [1] process is used to measure the
electroweak-mixing parameter sin2 θW [2]. At the Fermilab
Tevatron collider, Drell-Yan pairs are produced by the
process pp̄ → lþl− þ X, where the lþl− pair is produced
through an intermediate γ$=Z boson, and X is the final state
associated with the production of the boson. In the standard
model, the production of Drell-Yan lepton pairs at the Born
level proceeds through two parton-level processes,

qq̄ → γ$ → lþl− and qq̄ → Z → lþl−;

where the q and q̄ are the quark and antiquark, respectively,
from the colliding hadrons. The virtual photon couples the
vector currents of the incoming and outgoing fermions (f),
and the spacetime structure of a photon-fermion interaction
vertex is hf̄jQfγμjfi, where Qf, the strength of the
coupling, is the fermion charge (in units of e), and jfi
is the spinor for fermion f. An interaction vertex of a
fermion with a Z boson contains both vector (V) and
axial-vector (A) current components, and its structure is
hf̄jgfVγμ þ gfAγμγ5jfi. The Born-level coupling strengths
are

gfV ¼ Tf
3 − 2Qfsin2θW and gfA ¼ Tf

3 ;

where Tf
3 is the third component of the fermion weak-

isospin, which is Tf
3 ¼ 1

2 ð−
1
2Þ for positively (negatively)

charged fermions. At the Born level, and in all orders of the
on-shell renormalization scheme [3], the sin2 θW parameter
is related to the W-boson mass MW and the Z-boson mass
MZ by the relationship sin2 θW ¼ 1 −M2

W=M
2
Z. Radiative

corrections alter the strength of the Born-level couplings
into effective couplings. These effective couplings have
been investigated at the Tevatron [4–7], at the LHC [8–10],
and at LEP-1 and SLC [11,12]. The on-shell sin2 θW
coupling has been investigated with neutrino-nucleon
collisions at the Tevatron [13] and with electron-proton
collisions at HERA [14].
The effective sin2 θW coupling at the lepton vertex,

denoted as sin2 θlepteff , has been accurately measured at the
LEP-1 and SLC eþe− colliders [11,12]. The combined
average of six individual measurements yields a value of
0.23149# 0.00016. However, there is tension between the

two most precise individual measurements: the combined
LEP-1 and SLD b-quark forward-backward asymmetry
(A0;b

FB) yields sin
2 θlepteff ¼ 0.23221# 0.00029, and the SLD

left-right polarization asymmetry of Z-boson production
(Al) yields sin2 θ

lept
eff ¼ 0.23098# 0.00026. They differ by

3.2 standard deviations.
The Drell-Yan process at hadron-hadron colliders is also

sensitive to the sin2 θlepteff coupling. Measurements of the
forward-backward asymmetry in the l− polar-angle dis-
tribution as a function of the lepton-pair invariant mass are
used to extract the coupling. This paper presents a new
measurement of the sin2 θlepteff coupling and an inference of
the sin2 θW parameter using a sample of eþe− pairs
corresponding to an integrated pp̄ luminosity of 9.4 fb−1

collected at the Tevatron pp̄ collider. Innovative methods
for the calibration of the electron energy and the measure-
ment of the forward-backward asymmetry are used.
Electroweak radiative corrections used for the extraction
of sin2 θlepteff and sin2 θW are derived from an approach used
by LEP-1 and SLD.
An outline of the paper follows. Section II provides

an overview of the lepton angular distributions and the
extraction of sin2 θlepteff . Section III discusses quantum
chromodynamics (QCD) calculations for the forward-
backward asymmetry and the inclusion of electroweak
radiative-correction form factors used in the analysis of
high-energy eþe− collisions. The form factors are
required for the determination of sin2 θW from the
measurement of sin2 θlepteff . Section IV describes the
experimental apparatus. Section V reports on the selec-
tion of data. Section VI describes the simulation of
the reconstructed data. Sections VII and VIII present
the experimental calibrations and the measurement of the
asymmetry, respectively, along with corresponding cor-
rections to data and simulation. Section IX describes the
method used to extract sin2 θlepteff . Section X describes the
systematic uncertainties. Section XI presents the results
of this measurement using eþe− pairs, and Sec. XII
describes the combination of results from this measure-
ment and a previous CDF measurement using μþμ− pairs
[6]. Finally, Sec. XIII presents the summary. Standard
units are used for numerical values of particle masses and
momenta, e.g., 40 GeV=c2 and 20 GeV=c, respectively,
where c denotes the speed of light. Otherwise, natural
units (ℏ ¼ c ¼ 1) are used.
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Figure 1. Results of a χ2 analysis of ST parameters in EWPTs using the expansion formalism
of [106]. The dotted, dashed and solid contours denote the regions allowed at the 68%, 95%, and
99% CL, respectively, which may be compared with those of [109].

while those that affect the leptonic and hadronic Z-pole measurements directly through

modifications to the gauge boson-fermion couplings are

Ldim-6 ⊃
∑

fL

⎛

⎝ c̄fL
v2

OfL +
c̄(3)fL

v2
O(3)

fL

⎞

⎠+
∑

fR

c̄fR
v2

OfR .

The sum is over the left-handed lepton and quark doublets, fL ≡ LL, QL, and right-handed

lepton and quark singlets, fR ≡ eR, uR, dR, and we assume minimal flavour violation. The

Fermi constant GF defined by the muon lifetime, which we take as an input observable, is

modified by c̄(3)fL
as well as the four-fermion operator O(3)l

LL :

Ldim-6 ⊃
c̄(3)lLL

v2
O(3)l

LL .

We note that the coefficients are defined such that

c̄ ≡ c
M2

Λ2
, (2.6)

where M ≡ v,mW depending on the operator normalization, and c ∼ g2NP is a coefficient

proportional to a new physics coupling gNP defined at the scale M . These are related to

the coefficients at the new physics scale through RGE equations [110–117].

These operators form a redundant basis that is reducible through field redefinitions,

or equivalently the equations of motion, that have no effect on the S-matrix [44–49]. Fol-

lowing [88], we may eliminate the operators OLL ,O
(3)
LL

that affect the left-handed leptonic

Z couplings, and the operators O2W ,O2B,O2G corresponding to the Y,W and Z parame-

ters [101, 102] in the generalization of the universal oblique parameters.6 The coefficients

6The U, V and X parameters correspond to higher-dimensional operators.
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c̄WB and the combination c̄W + c̄B are related to the Ŝ parameter, and we eliminate the

former using the identity

OB = OHB +
1

4
OBB +

1

4
OWB .

The operators OHB,OBB affect Higgs physics and triple-gauge couplings, as we shall see

in the next section. Finally, the T̂ parameter is equivalent to the c̄T coefficient. This

choice of basis minimises the correlation of operator combinations among EWPT and

LHC measurements. These operators are listed in table 1, and the remaining operators

eliminated from our basis are defined in [118].

The corrections to the self-energies are then as in (2.5), with Ŝ = c̄W + c̄B and T̂ = c̄T .

We also have the input observable correction

ξGF = −2c̄(3)lLL ,

and direct contributions to the output observables,

ξΓZ =
Γl
Z

ΓZ
ξΓl

Z
+

Γhad
Z

ΓZ
ξΓhad

Z
,

ξσ0
had

= ξΓe
Z
+ ξΓhad

Z
− 2ξΓZ ,

ξRl = ξΓhad
Z

− ξΓl
Z
,

ξRq = ξΓq
Z
− ξΓhad

Z
,

ξ
A0,f

FB
= ξAe + ξAf ,

which can be written in terms of shifts to the Z-fermion couplings,

ξAf =
4
(
gfLZ
)2(

gfRZ
)2

(
gfLZ
)4 −

(
gfRZ
)4
(
ξ
g
fL
Z

− ξ
g
fR
Z

)
,

ξ
Γf
Z
=

2
(
gfLZ
)2

(
gfLZ
)2

+
(
gfRZ
)2 ξgfLZ

+
2
(
gfRZ
)2

(
gfLZ
)2

+
(
gfRZ
)2 ξgfRZ

,

where

ξ
g
fL
Z

=
1

gfLZ

(
T 3
f c̄

(3)
fL

−
c̄fL
2

)
, ξ

g
fR
Z

= −
c̄fR
2gfRZ

,

and gfZ ≡ T 3
f − Qfs2θW . Using these expressions and the expansion formalism in a χ2

analysis, we obtain 95% CL limits for the operator coefficients.

The left panel of figure 2 shows our results for fits to the coefficients c̄(3)lLL , c̄T , c̄W + c̄B,

together with the coefficient c̄eR that affects the leptonic observables
{
ΓZ ,σ0

had, R
0
e, R

0
µ, R

0
τ ,

A0,e
FB,mW

}
. The upper (green) bars indicate the ranges for each of the coefficients varied

individually, assuming that the other coefficients vanish, and the lower (red) bars show

the ranges for a global fit in which all the coefficients are varied simultaneously. In both

fits, the coefficients are all quite compatible with zero, with ranges ∼ ±0.001 in the single-

coefficient analysis, increasing in the global fit up to ∼ ±0.004 for the coefficient c̄T in the
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values of pα so as to remain in agreement with experiment. This may be quantified by a

χ2 analysis that varies the parameters (pSM, pα) so as to minimize the function

χ2(pSM, pα) =
∑

i,j

(
Ôth

i − Ôexp
i

) (
σ2
)−1

ij

(
Ôth

j − Ôexp
j

)
,

(
σ2
)
ij
= ∆Ôexp

i ρij∆Ôexp
j ,

where ρij is the correlation matrix.

To avoid recomputing the full expression Ôth
i (pSM, pα) for each value of pSM and pα,

the expansion formalism involves expanding about the Standard Model reference values for

the Lagrangian parameters:

ÔSM
i (pSM) = ÔSM

i

(
prefSM

)
+
∑

pSM

∂ÔSM
i

∂pSM

(
pSM − prefSM

)
+ . . .

≃ Ôref
i

[
1 + δ̄SMÔi(pSM)

]
,

where Ôref
i ≡ ÔSM

i

(
prefSM

)
, δ̄SMÔi(pSM) =

∑
pSM

GipSM δ̄pSM, and the quantities Gik′ ≡
prefSM

Ôref
i

∂ÔSM
i

∂pSM
are expansion coefficients that need only to be calculated once. Here δ̄pSM ≡

(
pSM − prefSM

)
/prefSM, and the fractional shift δ̄ is defined in general as δ̄Ôi ≡

(
Ôi−Ôref

i

)
/Ôref

i .

The reference values for the SM observables are taken from table 1 of [106], to which we

refer the reader for more details on the numerical calculation including the higher-order

loop corrections, which were obtained using ZFITTER [108]. This is also used for the

numerical differentiation involved in evaluating the expansion coefficients, which assumes

that the new physics contribution factorizes out of the SM loop expansion.

Furthermore, to emphasize that the pSM are not directly measurable, but are de-

termined from the input observables Ôi′ , we note that the Lagrangian parameters can

be eliminated in favour of the input observables by inverting the relation δ̄SMÔi′ =∑
pSM

Gi′pSM δ̄pSM, so that

δ̄SMÔi =
∑

i′

GipSM

(
∑

pSM

(
G−1

)
pSMi′

δ̄SMÔi′

)
=
∑

i′

dii′ δ̄
SMÔi′ .

The expansion coefficients for the output observables in terms of input observables are then

given by the matrix dii′ ≡
∑

pSM
GipSM

(
G−1

)
pSMi′

.

The theoretical predictions for the output observables can now be written as Ôth
i =

Ôref
i

(
1 + δ̄Ôth

i

)
, with

δ̄Ôth
i =

∑

i′

dii′ δ̄
SMÔi′ + ξi =

∑

i′

dii′
(
δ̄Ôth

i′ − ξi′
)
+ ξi ,

where we used δ̄ÔSM
i′ = δ̄Ôth

i′ − ξi′ and defined ξi ≡ δNPÔi/Ôref
i . The dii′ matrix is

pre-calculated and encapsulates the dependence of each output observable on each in-

put observable, so that one needs only to plug in the contribution due to new physics

that affect the input observables, ξi′ , and those that directly affect the output observ-

ables, ξi. We note that, for the case of vector boson self-energy corrections, the πV V ≡
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Figure 2. The 95% CL ranges found in analyses of the leptonic observables (left panel) and
including also the hadronic observables (right panel). In each case, the upper (green) bars denote
single-coefficient fits, and the lower (red) bars denote multi-coefficient fits. The upper-axis should
be read ×mW

v ∼ 1/3 for c̄W + c̄B .

multi-coefficient analysis.7 The legend at the top of the left panel of figure 2 translates the

ranges of the coefficients into ranges of sensitivity to a large mass scale Λ. We see that all

the sensitivities are in the multi-TeV range, including in the global analysis.

The right panel of figure 2 shows the effect of including the hadronic observables,{
R0

b , R
0
c , A

0,b
FB, A

0,c
FB, Ab, Ac

}
, and the coefficients that contribute directly to them, namely

c̄qL, c̄
(3)q
L , c̄uR and c̄dR. The ranges for the single-variable fits to c̄(3)lLL , c̄T , c̄W + c̄B and c̄eR

(upper,green lines) are the same as in the left panel, but the horizontal scales are different,

as seen immediately by comparing the separations of the vertical black dashed ‘tramlines’.

The ranges of these coefficients are altered significantly in the global 8-coefficient fit (lower,

red lines) and we see significant tension with the null hypotheses for c̄(3)lLL , c̄T , c̄W + c̄B and

c̄eR, which reflects the well-known tension between the Standard Model and heavy-flavour

measurements at the Z peak. However, values of c̄(3)lLL , c̄T , c̄W + c̄B and c̄eR between 0 and

−0.01 are favoured, corresponding to Λ ! 2.5TeV. The ranges of c̄qL, c̄
(3)q
L , c̄uR and c̄dR are

considerably broader in both fits, particularly in the global 8-coefficient fit, most notably

c̄uR and c̄dR, with values of the latter approaching −0.05 being allowed at the 95% CL.

3 Triple-gauge and Higgs couplings at the LHC

In previous work [89] we used LHC measurements of Higgs signal strengths together with

differential distributions in Higgs associated production measurements by ATLAS and D0

to constrain all the dimension-6 operators affecting Higgs physics. The associated produc-

tion information was vital in eliminating a blind direction, which can also be closed by

including TGC measurements. These are most precisely measured by LEP, but it has been

7We note that larger marginalized ranges for c̄eR and c̄(3)lLL are found in [88], warranting further

cross-checks.
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Operator Coefficient
LEP Constraints

Individual Marginalized

OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν m2
W

Λ2 (cW + cB) (−0.00055, 0.0005) (−0.0033, 0.0018)

OB = ig′

2

(
H†

↔
DµH

)
∂νBµν

OT = 1
2

(
H†

↔
DµH

)2
v2

Λ2 cT (0, 0.001) (−0.0043, 0.0033)

O(3) l
LL =

(
L̄LσaγµLL

) (
L̄LσaγµLL

)
v2

Λ2 c
(3)l
LL (0, 0.001) (−0.0013, 0.00075)

Oe
R =

(
iH†

↔
DµH

)
(ēRγµeR)

v2

Λ2 ceR (−0.0015, 0.0005) (−0.0018, 0.00025)

Ou
R =

(
iH†

↔
DµH

)
(ūRγµuR)

v2

Λ2 cuR (−0.0035, 0.005) (−0.011, 0.011)

Od
R =

(
iH†

↔
DµH

)(
d̄RγµdR

)
v2

Λ2 cdR (−0.0075, 0.0035) (−0.042, 0.0044)

O(3) q
L =

(
iH†σa

↔
DµH

)(
Q̄LσaγµQL

)
v2

Λ2 c
(3)q
L (−0.0005, 0.001) (−0.0044, 0.0044)

Oq
L =

(
iH†

↔
DµH

)(
Q̄LγµQL

)
v2

Λ2 c
q
L (−0.0015, 0.003) (−0.0019, 0.0069)

Table 1. List of operators and coefficients in our basis entering in EWPTs at LEP, together
with 95% CL bounds when individual coefficients are switched on one at a time, and marginalized
in a simultaneous fit. For the first four coefficients we report the constraints from the leptonic
observables, while the remaining coefficients also include the hadronic observables.
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′
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WW

}
are defined as in [106], and the contributions to output
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i′

dii′ δ̄Ôth
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V V
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W−
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W 3
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(
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH
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v2 ēi�µējH† !DµH
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v2 q̄i�µqjH† !DµH

[O0
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v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
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v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
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v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m2
W

p
2mei

mej

v
¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g0

m2
W

p
2mei

mej

v
¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
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m2
W

p
2mui

muj

v q̄iH̃�µ⌫T aujGa
µ⌫
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m2
W

p
2mui
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v q̄i�kH̃�µ⌫ujW k
µ⌫
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p
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p
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W

p
2mdi
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p
2mdi
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v q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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The tree-level relations between the input observables and the electroweak parameters are given by:
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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The tree-level relations between the input observables and the electroweak parameters are given by:
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g2 + g02v
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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The tree-level relations between the input observables and the electroweak parameters are given by:
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Figure 13. Best fit results for the decay signal strengths for the combination of ATLAS and CMS
data (the results for µµµ are reported in table 13). Also shown are the results from each experiment.
The error bars indicate the 1σ (thick lines) and 2σ (thin lines) intervals.

5.3 Boson- and fermion-mediated production processes

The Higgs boson production processes can be associated with Higgs boson couplings to ei-

ther fermions (ggF and ttH) or vector bosons (VBF, WH, and ZH). Potential deviations

of these couplings from the SM predictions can be tested by using a parameterisation with

two signal strengths for each decay channel f : µf
F = µf

ggF+ttH for the fermion-mediated

production processes and µf
V = µf

VBF+V H for the vector-boson-mediated production pro-

cesses. The branching fraction cancels in the ratio µf
V /µ

f
F that can be formed for each

Higgs boson decay channel. Two fits are performed for the combination of ATLAS and

CMS, and also separately for each experiment. The first is a ten-parameter fit of µf
F and µf

V

for each of the five decay channels, while the second is a six-parameter fit of µV /µF and

µf
F for each of the five decay channels.
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.
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II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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Figure 12. Best fit results for the production signal strengths for the combination of ATLAS and
CMS data. Also shown are the results from each experiment. The error bars indicate the 1σ (thick
lines) and 2σ (thin lines) intervals. The measurements of the global signal strength µ are also shown.

Higgs boson decays are also studied with six independent signal strengths, one for each

decay channel included in the combination, assuming that the Higgs boson production cross

sections are the same as in the SM. Unlike the production signal strengths, these decay-

based signal strengths are independent of the collision centre-of-mass energy and therefore

the
√
s = 7 and 8TeV data sets can be combined without additional assumptions. Table 13

and figure 13 present the best fit results for the combination of ATLAS and CMS, and

separately for each experiment (the results for µµµ are only reported in table 13). The

p-value of the compatibility between the data and the SM predictions is 75%.
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Higgs, HH, and ttH production
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Figure 1. Example diagrams for tt̄H production. The inserted operators are: (a) Otϕ (b) OϕG

(c) OtG.

available in such a framework, including top-quark decay processes, flavor-changing neu-

tral production, top-pair production, single-top production, and tt̄ associated production

with a Z-boson and with a photon [40–47]. Several Higgs decay results have also become

available recently [48–51].

The goal of this work is to improve the predictions of such deviations in tt̄H production

in SMEFT by computing the NLO QCD corrections. Besides, we will also present SMEFT

results for processes that are top-loop induced in the SM, such as pp → H, pp → Hj and

Higgs pair production pp → HH. Selected Feynman diagrams at the leading order (LO)

are shown in figure 1 and 2 for the tt̄H and loop-induced processes, respectively. The rele-

vant effective operators in these processes, i.e. those modifying ttH, ttg, and ggH vertices,

are both physically interesting and practically important, because they connect the top-

quark sector with the Higgs-boson sector in the SMEFT at dimension-six. Studying these

processes and interactions will allow us to investigate how much we can learn about the

top quark from Higgs measurements, and vice versa. In particular, the chromo-magnetic

dipole operator OtG, which gives rise to a dipole interaction in the gtt vertex and intro-

duces ggtt, gttH, and ggttH vertices, is often left out in Higgs operator analyses (see, for

example, [52–60]), because it is often considered as part of top-quark measurements. Here

we will show that the current tt̄H and pp → H measurements already provide useful infor-

mation about the chromo-dipole moment, comparable to what we can learn from top-pair

production, and that future measurements will improve the limits. This observation implies

that Higgs measurements are becoming sensitive to this interaction and therefore it should

not be neglected. Furthermore, the extraction of the Higgs self-coupling from pp → HH

measurements relies on a precise knowledge of the top-Higgs interactions. Here we com-

pute for the first time the contribution from the chromo-dipole moment OtG to Higgs pair

production. As it will be shown in the following, this operator gives a large contribution

to this process, even taking into account the current constraints from tt̄ production on the

size of its coefficient.
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the relevant mixing terms are always O(αs). Had we chosen a different normalisation of

operators, this would not be true.

We briefly discuss the mixing structure of these operators. The complete RG structure

has been given in [75–77]. In this work we will consider the QCD induced mixing, which is

relevant for our calculation, i.e. O(αs) terms with our normalisation. The mixing matrix

for (Otφ, OφG, OtG) has a triangle form:

dCi(µ)

d log µ
=

αs

π
γijCj(µ), γ =

⎛

⎜⎜⎝

−2 16 8

0 −7/2 1/2

0 0 1/3

⎞

⎟⎟⎠ . (2.5)

These operators involve three, two and one Higgs fields, respectively. In tt̄H production

with only QCD corrections, only one of the Higgs fields can be dynamic, so in this sense

their “dimensions” are 4, 5, 6 respectively. The triangle form of the matrix implies that

only a “higher-dimensional” operator can mix into a “lower-dimensional one”, i.e. OtG

mixes into OφG, and both of them mix into Otφ, but not the other way around.

Four-fermion operators that contribute to top-pair production would also play a role in

this process. However the tt̄ cross section measurement is sufficient to constrain this effect.

There are four linear combinations of operators that enter, defined as C1,2
u,d in ref. [90].

Using the notations of ref. [91], they can be written as

C1
u = C(1)1331

qq + C1331
uu + C(3)1331

qq , (2.6)

C2
u = C(8)1133

qu + C(8)3311
qu , (2.7)

C1
d = C(3)1331

qq +
1

4
C(8)3311
ud , (2.8)

C2
d = C(8)1133

qu + C(8)3311
qd . (2.9)

Consider σtt̄ and σtt̄H at 8TeV (at LO):

σ8TeV
tt̄ [pb] = 158

[
1 + 0.0101

(
C1
u + C2

u + 0.64C1
d + 0.64C2

d

)
+ 0.65CtG

]
(2.10)

σ8TeV
tt̄H [pb] = 0.110

[
1 + 0.055

(
C1
u + C2

u + 0.61C1
d + 0.61C2

d

)
+ 2.02CtG

]
, (2.11)

assuming Λ = 1TeV. We can see that approximately only one linear combination of the

four-fermion operator coefficients, i.e. C4 ≃ C1
u + C2

u + 0.6C1
d + 0.6C2

d enters both cross

sections, a pattern we do not expect to change at NLO. This behaviour is expected because

the Higgs only couples to the top quark with the same coupling regardless of which operator

triggers the process, so adding one Higgs does not resolve the degeneracy between four-

fermion operators. It does, however, increase the relative sensitivity to these operators,

because having a Higgs boson in the final state largely increases the center of mass energy

of the process, which in turn increases the relative contribution from the four-fermion

operators. On the other hand, the CtG contribution is independent of C4, and this is

because the Higgs particle can be emitted not only from the top quark but also from the

operator OtG with a four-point contact gttH or a five-point ggttH vertex, leading to a

different topology than the four-fermion operator cases. Since we are going to focus on
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Figure 2. Example diagrams for H, Hj, and HH production. The inserted operators are: (a) Otϕ

(b) OϕG (c) OtG. LO contributions from OϕG are at the tree level, while those from the other two
operators are induced by a top-quark loop.

Let us briefly discuss the motivations for having NLO SMEFT predictions.

• First, the impact of QCD corrections on the central values, which can be convention-

ally estimated by a K factor (the ratio of NLO central prediction to LO), is often

large at the LHC, and for an inclusive measurement this will improve the exclusion

limit on the effective operators. In addition, NLO corrections improve not only the

accuracy of the predictions by modifying the central value, but also the precision by

reducing the theoretical uncertainties due to missing higher-order corrections, which

leads to a further improvement on the limits. For example, the current limit on the

chromo-magnetic dipole operator from tt̄ is improved by a factor of 1.5 by including

QCD corrections [43], and the effects are even larger in the flavor-changing neutral

sector [42, 61–65].

• Second, QCD corrections often change the distributions due to effective operators

in a nontrivial way, not captured by the LO scale uncertainty. As the distribution

measurements start to play an important role in the EFT global analyses both in the

top-quark and in the Higgs sector [57–60, 66, 67], reliable predictions for the distri-

butions are needed as theory inputs. In fact, ref. [44] has shown that in an operator

fit, missing QCD corrections to the shapes could lead to a biased interpretation in

terms of new physics models. For this reason our final goal is to use the NLO pre-

dictions in a global EFT fit, including differential measurements, to extract maximal

information on the operator coefficients.

• Third, unlike in the SM where all the gauge couplings are known, the SMEFT has

many operator coefficients, and several of them remain to be constrained. Higher

order effects are important in that respect as they can be enhanced by the ratio of

two operator coefficients, C2/C1, if operator O1 contributes at the tree level, while

O2 at the loop level, and if C2 is loosely constrained. An example is gg → H, where

– 3 –
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8TeV σ LO σ/σSM LO σ NLO σ/σSM NLO K

σSM 0.127+0.049+0.000+0.002
−0.032−0.000−0.001 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 0.132+0.005+0.000+0.002
−0.012−0.000−0.002 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 1.03

σtφ −0.015+0.004+0.001+0.000
−0.006−0.001−0.000 −0.119+0.000+0.005+0.000

−0.000−0.006−0.000 −0.016+0.002+0.000+0.000
−0.001−0.000−0.000 −0.123+0.001+0.000+0.000

−0.002−0.002−0.000 1.07

σφG 0.161+0.064+0.021+0.003
−0.042−0.017−0.002 1.264+0.016+0.168+0.005

−0.015−0.137−0.003 0.211+0.030+0.009+0.004
−0.030−0.007−0.004 1.599+0.158+0.066+0.006

−0.091−0.052−0.009 1.31

σtG 0.123+0.049+0.000+0.002
−0.032−0.000−0.001 0.963+0.010+0.000+0.003

−0.009−0.002−0.002 0.127+0.005+0.000+0.002
−0.012−0.001−0.002 0.963+0.004+0.004+0.002

−0.003−0.007−0.003 1.03

σtφ,tφ 0.0004+0.0002+0.0001+0.0000
−0.0001−0.0000−0.0000 0.0035+0.0000+0.0004+0.0000

−0.0000−0.0002−0.0000 0.0005+0.0000+0.0000+0.0000
−0.0001−0.0000−0.0000 0.0036+0.0001+0.0002+0.0000

−0.0001−0.0000−0.0000 1.07

σφG,φG 0.120+0.056+0.028+0.005
−0.035−0.021−0.003 0.942+0.058+0.218+0.025

−0.048−0.161−0.014 0.187+0.041+0.018+0.005
−0.035−0.015−0.006 1.418+0.243+0.140+0.022

−0.148−0.115−0.028 1.56

σtG,tG 0.118+0.056+0.002+0.005
−0.035−0.002−0.003 0.929+0.060+0.015+0.026

−0.051−0.018−0.015 0.126+0.007+0.001+0.004
−0.015−0.002−0.004 0.959+0.017+0.008+0.015

−0.024−0.012−0.020 1.07

σtφ,φG −0.010+0.003+0.001+0.000
−0.004−0.002−0.000 −0.075+0.001+0.011+0.000

−0.001−0.014−0.000 −0.013+0.002+0.001+0.000
−0.002−0.001−0.000 −0.098+0.006+0.004+0.001

−0.011−0.007−0.000 1.34

σtφ,tG −0.007+0.002+0.000+0.000
−0.003−0.000−0.000 −0.058+0.001+0.003+0.000

−0.001−0.002−0.000 −0.008+0.001+0.000+0.000
−0.000−0.000−0.000 −0.060+0.001+0.001+0.000

−0.001−0.000−0.000 1.07

σφG,tG 0.131+0.058+0.013+0.004
−0.037−0.011−0.002 1.026+0.047+0.100+0.019

−0.040−0.083−0.011 0.175+0.027+0.005+0.004
−0.028−0.004−0.005 1.328+0.148+0.034+0.016

−0.095−0.031−0.021 1.34

13TeV σ LO σ/σSM LO σ NLO σ/σSM NLO K

σSM 0.464+0.161+0.000+0.005
−0.111−0.000−0.004 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 0.507+0.030+0.000+0.007
−0.048−0.000−0.008 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 1.09

σtφ −0.055+0.013+0.002+0.000
−0.019−0.003−0.001 −0.119+0.000+0.005+0.000

−0.000−0.006−0.000 −0.062+0.006+0.001+0.001
−0.004−0.001−0.001 −0.123+0.001+0.001+0.000

−0.001−0.002−0.000 1.13

σφG 0.627+0.225+0.081+0.007
−0.153−0.067−0.005 1.351+0.011+0.175+0.002

−0.011−0.145−0.001 0.872+0.131+0.037+0.013
−0.123−0.035−0.016 1.722+0.146+0.073+0.004

−0.089−0.068−0.005 1.39

σtG 0.470+0.167+0.000+0.005
−0.114−0.002−0.004 1.014+0.006+0.000+0.001

−0.006−0.004−0.001 0.503+0.025+0.001+0.007
−0.046−0.003−0.008 0.991+0.004+0.003+0.000

−0.010−0.006−0.001 1.07

σtφ,tφ 0.0016+0.0005+0.0002+0.0000
−0.0004−0.0001−0.0000 0.0035+0.0000+0.0004+0.0000

−0.0000−0.0003−0.0000 0.0019+0.0001+0.0001+0.0000
−0.0002−0.0000−0.0000 0.0037+0.0001+0.0002+0.0000

−0.0000−0.0001−0.0000 1.17

σφG,φG 0.646+0.274+0.141+0.018
−0.178−0.107−0.010 1.392+0.079+0.304+0.025

−0.066−0.231−0.014 1.021+0.204+0.096+0.024
−0.178−0.085−0.029 2.016+0.267+0.190+0.021

−0.178−0.167−0.027 1.58

σtG,tG 0.645+0.276+0.011+0.020
−0.178−0.015−0.010 1.390+0.082+0.023+0.028

−0.069−0.031−0.016 0.674+0.036+0.004+0.016
−0.067−0.007−0.019 1.328+0.011+0.008+0.014

−0.038−0.014−0.018 1.04

σtφ,φG −0.037+0.009+0.006+0.000
−0.013−0.007−0.000 −0.081+0.001+0.012+0.000

−0.001−0.015−0.000 −0.053+0.008+0.003+0.001
−0.008−0.004−0.001 −0.105+0.006+0.006+0.000

−0.009−0.007−0.000 1.42

σtφ,tG −0.028+0.007+0.001+0.000
−0.010−0.001−0.000 −0.060+0.000+0.002+0.000

−0.000−0.003−0.000 −0.031+0.003+0.000+0.000
−0.002−0.000−0.000 −0.061+0.000+0.000+0.000

−0.000−0.001−0.000 1.10

σφG,tG 0.627+0.252+0.053+0.014
−0.166−0.047−0.008 1.349+0.054+0.114+0.016

−0.046−0.100−0.009 0.859+0.127+0.021+0.017
−0.126−0.020−0.022 1.691+0.137+0.042+0.013

−0.097−0.039−0.017 1.37

14TeV σ LO σ/σSM LO σ NLO σ/σSM NLO K

σSM 0.558+0.191+0.000+0.005
−0.132−0.000−0.004 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 0.614+0.039+0.000+0.008
−0.058−0.000−0.009 1.000+0.000+0.000+0.000

−0.000−0.000−0.000 1.10

σtφ −0.066+0.016+0.003+0.001
−0.023−0.004−0.001 −0.119+0.000+0.005+0.000

−0.000−0.007−0.000 −0.075+0.008+0.001+0.001
−0.006−0.001−0.001 −0.123+0.001+0.001+0.000

−0.001−0.002−0.000 1.14

σφG 0.758+0.268+0.098+0.008
−0.184−0.081−0.006 1.359+0.011+0.176+0.002

−0.010−0.144−0.001 1.064+0.160+0.045+0.015
−0.149−0.040−0.018 1.731+0.143+0.073+0.003

−0.087−0.066−0.004 1.40

σtG 0.567+0.198+0.000+0.006
−0.136−0.001−0.005 1.017+0.006+0.001+0.001

−0.005−0.001−0.001 0.609+0.029+0.003+0.008
−0.054−0.002−0.009 0.992+0.006+0.006+0.000

−0.014−0.003−0.000 1.07

σtφ,tφ 0.0020+0.0007+0.0002+0.0000
−0.0005−0.0001−0.0000 0.0036+0.0000+0.0003+0.0000

−0.0000−0.0002−0.0000 0.0022+0.0002+0.0003+0.0000
−0.0002−0.0000−0.0000 0.0036+0.0000+0.0005+0.0000

−0.0000−0.0000−0.0000 1.12

σφG,φG 0.817+0.342+0.179+0.022
−0.223−0.134−0.012 1.465+0.083+0.320+0.025

−0.069−0.240−0.014 1.293+0.256+0.122+0.029
−0.223−0.105−0.036 2.105+0.268+0.198+0.021

−0.182−0.170−0.027 1.58

σtG,tG 0.819+0.345+0.014+0.024
−0.224−0.017−0.012 1.468+0.087+0.025+0.028

−0.073−0.030−0.016 0.852+0.046+0.007+0.019
−0.081−0.005−0.024 1.388+0.014+0.011+0.014

−0.048−0.008−0.018 1.04

σtφ,φG −0.045+0.011+0.006+0.000
−0.016−0.009−0.000 −0.081+0.001+0.012+0.000

−0.001−0.016−0.000 −0.065+0.009+0.004+0.001
−0.010−0.005−0.001 −0.105+0.006+0.006+0.000

−0.009−0.008−0.000 1.44

σtφ,tG −0.033+0.008+0.001+0.000
−0.012−0.002−0.000 −0.060+0.000+0.002+0.000

−0.000−0.003−0.000 −0.038+0.004+0.001+0.001
−0.002−0.000−0.000 −0.062+0.000+0.001+0.000

−0.001−0.000−0.000 1.13

σφG,tG 0.783+0.310+0.066+0.016
−0.205−0.056−0.009 1.403+0.056+0.119+0.016

−0.048−0.101−0.009 1.070+0.154+0.033+0.021
−0.154−0.024−0.026 1.741+0.132+0.053+0.012

−0.096−0.039−0.016 1.37

Table 1. Total cross section in pb for pp → tt̄H at 8, 13, and 14TeV, as parametrised in eq. (5.3).
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Study contributions from each dimension-6 term assuming unit coupling, scale equal to 1 TeV
J
H
E
P
1
0
(
2
0
1
6
)
1
2
3

• Impact of missing higher-dimensional operators.

The contribution σ(1,dim8)
i cannot be computed without analysing dimension-eight

operators. A corresponding uncertainty should be taken into account. For example,

one can use smax/Λ2 to estimate the relative size of dimension-eight interference to

dimension-six interference, where smax is a cutoff on the centre-of-mass energy of the

process, as applied in the analysis [106]. The results we present in this work are not

computed with this cutoff, but with our setup this is straightforward.

5 Numerical results

In this section we give results for total cross sections and distributions. Results are ob-

tained with MMHT2014 LO/NLO PDFs [109], for LO and NLO results respectively; input

parameters are

mt = 172.5GeV , mH = 125GeV , mZ = 91.1876GeV , (5.1)

α−1
EW = 127.9 , GF = 1.16637× 10−5GeV−2 . (5.2)

Central scales for µR, µF are chosen as mt + mH/2 for the tt̄H process, and mH for the

other loop-induced processes. The central scale for µEFT is chosen as mt for all processes.

5.1 Total cross sections

Cross sections from dimension-six operators can be parametrised as

σ = σSM +
∑

i

1TeV2

Λ2
Ciσi +

∑

i≤j

1TeV4

Λ4
CiCjσij . (5.3)

Note that this parametrisation is slightly different from eq. (4.1) because we have added a

“i ≤ j” in the summation. In other words, for the cross terms (i.e. σij , i ̸= j), a factor of two

from exchanging i, j will be included in σij . We will now present results for σSM, σi, and σij .

We quote numbers with three uncertainties. The first is the standard scale uncertainty,

obtained by independently setting µR and µF to µ/2, µ and 2µ, where µ is the central scale

obtaining nine (µR, µF ) combinations. The third uncertainty comes from the MMHT PDF

sets. The second one is the EFT scale uncertainty, representing the missing higher-order

corrections to the operators, obtained by using eq. (4.3).

In table 1 we give the LO/NLO results for tt̄H total cross section for the LHC at

8, 13 and 14TeV. Both LO and NLO cross sections, as well as their ratios over the SM

cross section, are given. In general the ratios to the SM contribution increase with en-

ergy, as expected in an EFT, except for the Otϕ contributions which only rescale the SM

Yukawa coupling. The quadratic terms and cross terms, i.e. σij displayed in the last six

rows, are in general not small, and we will see that given the current bounds on these

operators they should not be neglected. The K factors range between roughly 1 to 1.6,

depending on operators, and can be very different from the SM. In particular, contribu-

tions related to OϕG tend to have large K factors. Improved precision is clearly reflected

by the reduced uncertainties at NLO. The dominant uncertainties come from µR,F scale
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ttH 

Better sensitivity to ctG than ctφ

Inclusive Higgs 

Tightly constrains cφG 

J
H
E
P
1
0
(
2
0
1
6
)
1
2
3

8TeV σ LO σ/σSM LO

σSM 8.08+2.11+0.000
−1.60−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ −0.962+0.190+0.043
−0.252−0.049 −0.119+0.000035+0.0053

−0.000039−0.0061

σφG 551.0+71.1+50.8
−62.8−42.6 68.2+7.70+6.29

−7.64−5.27

σtG 5.47+1.43+0.657
−1.08−1.88 0.677+0.000029+0.081

−0.000059−0.23

σtφ,tφ 0.0286+0.0075+0.00301
−0.0057−0.00250 0.00354+0.000000+0.00037

−0.000001−0.00031

σφG,φG 9289+24.2+1792
−130−1382 1149+263+222

−236−171

σtG,tG 0.924+0.2415+5.44
−0.1826−0.0 0.1144+0.000000+0.673

−0.000002−0.0

σtφ,φG −32.57+3.673+3.86
−4.146−4.83 −4.030+0.447+0.478

−0.449−0.597

σtφ,tG −0.326+0.0643+0.125
−0.0851−0.0407 −0.0403+0.000005+0.0154

−0.000003−0.0050

σφG,tG 185.08+22.96+0.0
−20.38−393 22.90+2.495+0.0

−2.491−48.7

13TeV σ LO σ/σSM LO

σSM 19.6+5.47+0.000
−4.17−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ −2.34+0.439+0.104
−0.576−2.46 −0.119+0.000004+0.0053

−0.000006−0.0061

σφG 1307+183.9+120
−166.0−101 66.7+7.29+6.16

−7.24−5.16

σtG 13.28+3.71+1.99
−2.83−4.90 0.678+0.000051+0.102

−0.000018−0.250

σtφ,tφ 0.0695+0.0194+0.00732
−0.0148−0.00607 0.00355+0.0000+0.00037

−0.0000−0.00031

σφG,φG 22515+377+4340
−732−3350 1150+264+222

−236−171

σtG,tG 2.253+0.631+13.2
−0.481−0.0 0.115+0.000050+0.676

−0.000062−0.0

σtφ,φG −76.8+9.38+9.11
−10.3−11.4 −3.923+0.446+0.47

−0.453−0.58

σtφ,tG −0.799+0.171+0.332
−0.224−0.134 −0.04078+0.000062+0.017

−0.000050−0.007

σφG,tG 450+63.3+0.0
−57.3−954 23.0+2.50+0.0

−2.49−48.7

14TeV σ LO σ/σSM LO

σSM 22.4+6.41+0.000
−4.87−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ −2.66+0.576+0.118
−0.757−0.136 −0.118+0.000065+0.00529

−0.000080−0.00608

σφG 1509+224+139
−203−117 67.3+7.47+6.20

−7.50−5.20

σtG 15.1+4.296+2.06
−3.27−5.33 0.673+0.000628+0.092

−0.000506−0.238

σtφ,tφ 0.0791+0.0225+0.00832
−0.0171−0.0069 0.00352+0.000003+0.00037

−0.000002−0.00031

σφG,φG 2564+546+4947
−962−3813 1143+263+221

−235−170

σtG,tG 2.55+0.727+15.1
−0.553−0.0 0.114+0.000074+0.673

−0.000060−0.0

σtφ,φG −89.5+12.85+10.6
−14.1−13.2 −3.99+0.479+0.473

−0.478−0.59

σtφ,tG −0.895+0.194+0.340
−0.254−0.204 −0.0399+0.000046+0.0152

−0.000057−0.0091

σφG,tG 515+75.2+0.0
−67.8−1089 22.94+2.506+0.0

−2.490−48.6

Table 2. Total cross section in pb for pp → H at 8, 13, and 14TeV, as parametrised in eq. (5.3).
Only the renormalisation and factorisation and EFT scale uncertainties are shown.
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Fit to inclusive H and ttH
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson (down),
normalised. Left: interference contributions from σi. Right: squared contributions σii. SM contri-
butions and individual operator contributions are displayed. Lower panels give the K factors and
µR,F uncertainties.
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson (down),
normalised. Left: interference contributions from σi. Right: squared contributions σii. SM contri-
butions and individual operator contributions are displayed. Lower panels give the K factors and
µR,F uncertainties.
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J
H
E
P
1
0
(
2
0
1
6
)
1
2
3

Individual Marginalised CtG fixed

Ctφ/Λ2 [TeV−2] [-3.9,4.0] [-14,31] [-12,20]

CφG/Λ2 [TeV−2] [-0.0072,-0.0063] [-0.021,0.054] [-0.022,0.031]

CtG/Λ2 [TeV−2] [-0.68,0.62] [-1.8,1.6]

Table 7. Constraints on C/Λ2 from the simplified fit. In the first column, only one operator is
allowed at a time. In the second column, all operator coefficients are allowed to float. In the third
column, CtG is set to zero while the other two coefficients are floated.

are also affected due to changes in the total width from H → gg. We include these effects

at LO only (tree-level for OφG, one-loop for Otφ and OtG). For this reason different decay

channels need to be considered separately. Because the measurements are based on signal

strengths, defined as the ratio of deviation in cross sections to the SM prediction, we prefer

to have same order predictions for both the SM and operator contributions. For tt̄H we

use our NLO predictions, while for pp → H and Higgs decay we only use LO predictions,

as not all loop-induced contributions are known at NLO. Both production and decay rates

are included up to order C2/Λ4. A χ2-fit is performed to derive the limits. All coefficients

in this section are defined with µEFT = mt unless specifically mentioned, and all results

given in this section correspond to 95% confidence level.

Top-pair production is not included in the fit. We assume that this degree of freedom

will be used to constrain the four-fermion operators. While a global fit including both

sectors is the only consistent way to extract information on the dimension-six operators,

this is beyond the scope of this paper.

Current limits at 95% confidence level are given in table 7. The most constrained

operator is CφG, as it gives a tree-level contribution to Higgs production. Individual

limits (i.e. setting other coefficients to zero) and marginalised ones (i.e. floating other

coefficients) are given in the first two columns. Interestingly, the CtG limit is already

comparable to its current limit from tt̄ production only (assuming no four-fermion operator

contributes). This is because the tt̄H cross section is more sensitive to the OtG operator

due to the higher partonic energies probed, and in addition the squared contribution from

CtG given the current limits is not negligible. Even though the current limit from tt̄H

is still weaker, given that the tt̄H measurement still has a lot of room to improve, it will

become more competitive in the near future. In fact, assuming 10% uncertainty on tt̄H

and 4% uncertainty on pp → H for 14TeV 3000 fb−1 [36], we find −0.12 < CtG < 0.12

and −1.0 < CtG < 1.1 (Λ =1TeV) respectively for individual and marginalised limits. On

the other hand, assuming a 5% precision for tt̄ production at 14TeV, the individual limit

on CtG is −0.33 < CtG < 0.33 (Λ =1TeV) [43], and a factor of a few is expected once

marginalised over the four-fermion operators.

In the third column of table 7 we show limits obtained by assuming only CtG = 0 but

floating the other two coefficients. CtG = 0 is typically assumed in Higgs operator analyses.

By comparing the last two columns in the table, we can see how much more room is allowed

once this operator is included.
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Investigate sensitivity with a restricted fit to three operators

31

Relatively weak sensitivity to ctφ 
Entire perturbative range allowed at 1 TeV

Could improve constraints with  
differential measurement of ttH
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Higgs boson pair production

32

decay fractions of hh → bbbb, bbττ, bbγγ and γγWW! are,
respectively, 32.6%, 7.1%, 0.26%, and 0.10%. The reso-
nant search assumes that gluon fusion is the production
mechanism for a heavy Higgs boson that can subsequently
decay to a pair of lighter Higgs bosons, i.e., gg → H → hh.
Furthermore, the heavy Higgs boson is assumed to have a
width significantly smaller than the detector resolution,
which is approximately 1.5% in the best case (the hh →
γγbb analysis). The potential interference between non-
resonant and resonant production is ignored.
This paper is organized as follows. For the hh → bbττ

and hh → γγWW! analyses, data and Monte Carlo (MC)
samples are described in Sec. II and the object
reconstruction and identification are outlined in Sec. III.
In Secs. IVand V, the separately published hh → γγbb and
hh → bbbb analyses are briefly summarized. The hh →
bbττ and hh → γγWW! analyses including event selection,
background estimations, and systematic uncertainties are
presented in Secs. VI and VII, respectively. The statistical
and combination procedure is described in Sec. VIII. The
results of the hh → bbττ and hh → γγWW! analyses, as
well as their combinations with the published analyses are
reported in Sec. IX. The implications of the resonant search

for two specific scenarios of the MSSM, hMSSM [28,29],
and low-tb-high [30] are discussed in Sec. X. These
scenarios make specific assumptions and/or choices of
MSSM parameters to accommodate the observed Higgs
boson. Finally, a summary is given in Sec. XI.

II. DATA AND MONTE CARLO SAMPLES

The data used in the searches were recorded in 2012
with the ATLAS detector at the Large Hadron Collider
in proton-proton collisions at a center-of-mass energy of
8 TeV and correspond to an integrated luminosity of
20.3 fb−1. The ATLAS detector is described in detail in
Ref. [31]. Only data recorded when all subdetector systems
were properly functional are used.
Signal and background MC samples are simulated with

various event generators, each interfaced to Pythia v8.175
[32] for parton showers, hadronization and underlying-
event simulation. Parton distribution functions (PDFs)
CT10 [33] or CTEQ6L1 [34] for the proton are used
depending on the generator in question. MSTW2008 [35]
and NNPDF [36] PDFs are used to evaluate systematic
uncertainties. Table I gives a brief overview of the event

t/b
h∗

g

g

h

h

(a)

t/b

g

g

h

h

(b)

FIG. 1. Leading-order Feynman diagrams of the nonresonant production of Higgs boson pairs in the Standard Model through (a) the
Higgs boson self-coupling and (b) the Higgs-fermion Yukawa interactions only.

TABLE I. List of MC generators and parton distribution functions of the signal and background processes used by the hh → bbττ and
hh → γγWW! analyses. SM cross sections used for the normalization are also given. For theWZ and ZZ processes, contributions from
γ! are included and the cross sections quoted are for mZ=γ! > 20 GeV.

Process Event generator PDF set Cross section [pb]

Background processes

V þ jets AlpgenþPythia8 CTEQ6L1 normalized to data
Diboson: WW PowhegþPythia8 CT10 55.4
Diboson: WZ PowhegþPythia8 CT10 22.3
Diboson: ZZ PowhegþPythia8 CT10 7.3
tt̄ PowhegþPythia8 CT10 253
Single top: t-channel AcerMCþPythia8 CTEQ6L1 87.8
Single top: s-channel PowhegþPythia8 CT10 5.6
Single top: Wt PowhegþPythia8 CT10 22.0
gg → h PowhegþPythia8 CT10 19.2
qq̄0 → qq̄0h PowhegþPythia8 CT10 1.6
qq̄ → Vh Pythia8 CTEQ6L1 1.1
qq̄=gg → tt̄h Pythia8 CTEQ6L1 0.13
Signal processes
Nonresonant gg → hh MadGraph5þPythia8 CTEQ6L1 0.0099
Resonant gg → H → hh MadGraph5þPythia8 CTEQ6L1 model dependent
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Crucial probe of the Higgs field potential 

Extraordinarily challenging due to  
destructive interference

J
H
E
P
1
0
(
2
0
1
6
)
1
2
3

8TeV σ LO σ/σSM LO

σSM 0.00755+0.00313+0.000
−0.00206−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ 0.00167+0.000704+0.000086
−0.000459−0.000075 0.221+0.00111+0.0113

−0.000876−0.0099

σφG −0.348+0.0676+0.0273
−0.0903−0.0325 −46.0+5.04+3.61

−4.93−4.31

σtG −0.0111+0.00290+0.00183
−0.00432−0.0010 −1.46+0.0244+0.243

−0.0203−0.135

σtφ,tφ 0.000198+0.000088+0.0000208
0.000057−0.0000173 0.0262+0.00060+0.0028

−0.00048−0.0023

σφG,φG 19.42+2.67+3.75
−2.19−2.89 2571+626+497

−544−383

σtG,tG 0.0127+0.00559+0.00133
−0.00359−0.00323 1.69+0.0289+0.176

−0.0209−0.427

σtφ,φG −0.0853+0.0186+0.010
−0.0257−0.013 −11.29+1.54+1.35

−1.62−1.69

σtφ,tG −0.00255+0.000700+0.000546
−0.00107−0.000323 −0.337+0.00113+0.072

−0.00127−0.043

σφG,tG 0.987+0.277+0.143
−0.199−0.202 130.7+16.4+18.9

−15.4−26.8

13TeV σ LO σ/σSM LO

σSM 0.0256+0.00904+0.000
−0.00625−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ 0.00580+0.00209+0.000297
−0.00144−0.000259 0.227+0.00114+0.0116

−0.000918−0.0101

σφG −1.208+0.231+0.0948
−0.291−0.113 −47.3+6.18+3.707

−6.14−4.42

σtG −0.0347+0.00804+0.0041
−0.0113−0.0013 −1.356+0.0271+0.161

−0.0225−0.051

σtφ,tφ 0.000748+0.000290+0.000079
−0.000194−0.000065 0.0293+0.000727+0.0031

−0.000584−0.0026

σφG,φG 73.02+7.54+14.1
−6.48−10.9 2856.2+743.3+552

−628.5−425

σtG,tG 0.0496+0.0198+0.00505
−0.01305−0.0126 1.940+0.0650+0.198

−0.0477−0.493

σtφ,φG −0.303+0.0506+0.0362
−0.0641−0.0453 −11.83+1.39+1.42

−1.41−1.77

σtφ,tG −0.00870+0.00213+0.00163
−0.00309−0.00120 −0.340+0.000238+0.064

−0.000438−0.047

σφG,tG 3.77+0.914+0.554
−0.681−0.802 147.5+20.83+20.7

−18.86−31.4

14TeV σ LO σ/σSM LO

σSM 0.0305+0.0105+0.000
−0.00734−0.000 1.000+0.000+0.000

−0.000−0.000

σtφ 0.00694+0.00245+0.00031
−0.00169−0.00036 0.227+0.00131+0.0117

−0.00106−0.0101

σφG −1.508+0.214+0.118
−0.256−0.141 −49.4+6.45+3.87

−6.39−4.61

σtG −0.0408+0.00929+0.0037
−0.0130−0.0008 −1.337+0.0271+0.122

−0.0224−0.0262

σtφ,tφ 0.000904+0.000343+0.000095
−0.000232−0.000079 0.0296+0.00076+0.0031

−0.00061−0.0026

σφG,φG 88.35+8.72+17.1
−7.55−13.2 2896+741+560

−641−431

σtG,tG 0.0608+0.0241+0.00605
−0.0159−0.0148 1.994+0.0753+0.198

−0.0556−0.484

σtφ,φG −0.367+0.0520+0.0439
−0.0670−0.0550 −12.0+1.46+1.44

−1.56−1.80

σtφ,tG −0.0104+0.00253+0.00192
−0.00368−0.00174 −0.341+0.0014+0.063

−0.002−0.057

σφG,tG 4.60+1.09+0.640
−0.816−0.923 150.7+21.69+21.0

−19.53−30.3

Table 5. Total cross section in pb for pp → HH at 8, 13, and 14TeV at LO. Only the µR,F and
EFT scale uncertainties are shown.
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Higgs boson pair production

and to test the hypothesis of Higgs boson pair production
with its cross section as the parameter of interest.
Additional nuisance parameters are included to take into
account systematic uncertainties and their correlations. The
likelihood is the product of terms of the Poisson probability
constructed from the final discriminant and of nuisance
parameter constraints with either Gaussian, log-normal, or
Poisson distributions. Upper limits on the Higgs boson pair
production cross section are derived using the CLs method
[71]. For the combinations, systematic uncertainties that
affect two or more analyses (such as those of luminosity, jet
energy scale and resolutions, b-tagging, etc.) are modeled
with common nuisance parameters.
For thehh → bbττ analysis, Poissonprobability terms are

calculated for the four categories separately from the mass
distributions of the ditau system for the nonresonant search
[Fig. 3(a)] and of the bbττ system for the resonant search
[Fig. 3(b)]. Thembbττ distributions of the resonant search are
rebinned to ensure a sufficient number of events for the
background prediction in each bin, in particular a single bin
is used for mbbττ ≳ 400 GeV for each category. For the
hh → γγWW! analysis, event yields are used to calculate
Poisson probabilities without exploiting shape information.
The hh → γγbb and hh → bbbb analyses are published
separately in Refs. [21,22]. However, the results are quoted
at slightly different values of the Higgs boson massmh and,
therefore, have been updated using a common mass value
of mh ¼ 125.4 GeV [24] for the combinations. The decay
branching ratios of the Higgs boson h and their uncertainties
used in the combinations are taken from Ref. [27]. Table III
is a summary of the number of categories and final
discriminants used for each analysis.

The four individual analyses are sensitive to different
kinematic regions of the hh production and decays. The
combination is performed assuming that the relative con-
tributions of these regions to the total cross section are
modeled by the MadGraph5 [39] program used to simulate the
hh production.

IX. RESULTS

In this section, the limits on the nonresonant and
resonant searches are derived. The results of the hh →
bbττ and hh → γγWW! analyses are first determined and
then combined with previously published results of the
hh → γγbb and hh → bbbb analyses. The impact of the
leading systematic uncertainties is also discussed.
The observed and expected upper limits at 95% C.L. on

the cross section of nonresonant production of a Higgs
boson pair are shown in Table IV. These limits are to be
compared with the SM prediction of 9.9# 1.3 fb [17] for
gg → hh production with mh ¼ 125.4 GeV. Only the
gluon fusion production process is considered. The
observed (expected) cross-section limits are 1.6 (1.3) pb
and 11.4 (6.7) pb from the hh → bbττ and hh → γγWW!

analyses, respectively. Also shown in the table are the
cross-section limits relative to the SM expectation. The
results are combined with those of the hh → γγbb and
hh → bbbb analyses. The p-value of compatibility of the
combination with the SM hypothesis is 4.4%, equivalent to
1.7 standard deviations. The low p-value is a result of the
excess of events observed in the hh → γγbb analysis. The
combined observed (expected) upper limit on σðgg → hhÞ
is 0.69 (0.47) pb, corresponding to 70 (48) times the cross

TABLE III. An overview of the number of categories and final discriminant distributions used for both the nonresonant and resonant
searches. Shown in the last column are the mass ranges of the resonant searches.

hh Nonresonant search Resonant search
Final state Categories Discriminant Categories Discriminant mH [GeV]

γγbb̄ 1 mγγ 1 event yields 260–500
γγWW! 1 event yields 1 event yields 260–500
bb̄ττ 4 mττ 4 mbbττ 260–1000
bb̄bb̄ 1 event yields 1 mbbbb 500–1500

TABLE IV. The expected and observed 95% C.L. upper limits on the cross sections of nonresonant gg → hh production atffiffiffi
s

p
¼ 8 TeV from individual analyses and their combinations. SM values are assumed for the h decay branching ratios. The

cross-section limits normalized to the SM value are also included.

Analysis γγbb γγWW! bbττ bbbb Combined

Upper limit on the cross section [pb]

Expected 1.0 6.7 1.3 0.62 0.47
Observed 2.2 11 1.6 0.62 0.69

Upper limit on the cross section relative to the SM prediction

Expected 100 680 130 63 48
Observed 220 1150 160 63 70
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8 TeV results in four  
channels

13 TeV data: results in three channels

bbbb: σ < 29σSM

ATLAS-CONF-2016-049

γγWW*: σ < 750σSM

ATLAS-CONF-2016-071

γγbb: σ < 120σSM

ATLAS-CONF-2016-004

Will need HL-LHC to observe SM Higgs pair production 
EFT fits could be performed with existing searches
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CP-odd operators

2 E↵ective Lagrangian framework

The e↵ective Lagrangian considered is the SM Lagrangian augmented by CP-violating operators of mass
dimension six, which can be constructed from the Higgs doublet � and the U(1)Y and SU(2)IW ,L elec-
troweak gauge fields Bµ and Wa,µ (a = 1,2,3), respectively. No CP-conserving dimension-six operators
built from these fields are taken into account. All interactions between the Higgs boson and other SM
particles (fermions and gluons) are assumed to be as predicted in the SM; i.e. the coupling structure in
gluon fusion production and in the decay into a pair of ⌧-leptons is considered to be the same as in the
SM.

The e↵ective U(1)Y - and SU(2)IW ,L-invariant Lagrangian is then given by (following Ref. [21, 22]):

Le↵ = LSM +
fB̃B

⇤2 OB̃B +
fW̃W

⇤2 OW̃W +
fB̃

⇤2OB̃ (1)

with the three dimension-six operators

OB̃B = �
+ ˆ̃Bµ⌫B̂µ⌫� OW̃W = �

+ ˆ̃Wµ⌫Ŵµ⌫� OB̃ = (Dµ�)+ ˆ̃Bµ⌫D⌫� . (2)

and three dimensionless Wilson coe�cients fB̃B, fW̃W and fB̃; ⇤ is the scale of new physics.

Here Dµ denotes the covariant derivative Dµ = @µ + i
2g
0Bµ + ig�a

2 Wa
µ , V̂µ⌫ (V = B,Wa) the field-strength

tensors and Ṽµ⌫ = 1
2✏µ⌫⇢�V⇢� the dual field-strength tensors, with B̂µ⌫ + Ŵµ⌫ = ig

0
2 Bµ⌫ + ig2�

aWa
µ⌫.

The last operator OB̃ contributes to the CP-violating charged triple gauge-boson couplings ̃� and ̃Z via

the relation ̃� = � cot2 ✓W ̃Z =
m2

W
2⇤2 fB̃. These CP-violating charged triple gauge boson couplings are

constrained by the LEP experiments [23–25] and the contribution from OB̃ is neglected in the following;
i.e. only contributions from OB̃B and OW̃W are taken into account.

After electroweak symmetry breaking in the unitary gauge the e↵ective Lagrangian in the mass basis of
Higgs boson H, photon A and weak gauge bosons Z and W± can be written, e.g. as in Ref. [26]:

Le↵ = LSM + g̃HAAHÃµ⌫Aµ⌫ + g̃HAZHÃµ⌫Zµ⌫ + g̃HZZHZ̃µ⌫Zµ⌫ + g̃HWW HW̃+µ⌫W
�µ⌫ . (3)

Only two of the four couplings g̃HVV (V = W±,Z, �) are independent due to constraints imposed by U(1)Y
and SU(2)IW ,L invariance. They can be expressed in terms of two dimensionless couplings d̃ and d̃B as:

g̃HAA =
g

2mW
(d̃ sin2 ✓W + d̃B cos2 ✓W) g̃HAZ =

g

2mW
sin 2✓W(d̃ � d̃B) (4)

g̃HZZ =
g

2mW
(d̃ cos2 ✓W + d̃B sin2 ✓W) g̃HWW =

g

mW
d̃ . (5)

Hence in general WW, ZZ, Z� and �� fusion contribute to VBF production. The relations between d̃ and
fW̃W , and d̃B and fB̃B are given by:

d̃ = �m2
W

⇤2 fW̃W d̃B = �
m2

W

⇤2 tan2 ✓W fB̃B . (6)

As the di↵erent contributions from the various electroweak gauge-boson fusion processes cannot be dis-
tinguished experimentally, the arbitrary choice d̃ = d̃B is adopted. This yields the following relation for
the g̃HVV :

g̃HAA = g̃HZZ =
1
2
g̃HWW =

g

2mW
d̃ and g̃HAZ = 0 . (7)

4

Can probe CP-odd non-SM interactions using jet angles in VBF production
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�µ⌫ . (3)
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g

2mW
d̃ and g̃HAZ = 0 . (7)

4

Can constrain only one direction; here chose

Write matrix element as

The parameter d̃ is related to the parameter ̂W = �̃W/SM tan↵ used in the investigation of CP properties
in the decay H ! WW [15] via d̃ = �̂W = �̃W/SM tan↵. The choice d̃ = d̃B yields ̂W = ̂Z as assumed
in the combination of the H ! WW and H ! ZZ decay analyses [15].

The e↵ective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coup-
ling to two identical or charge-conjugated electroweak gauge bosons HV(p1)V(p2) (V = W,Z, �), with
p1,2 denoting the momenta of the gauge bosons:

T µ⌫(p1, p2) =
X

V=W,Z

2m2
V

v
gµ⌫ +

X

V=W,Z,�

2g
mW

d̃ "µ⌫⇢�p1⇢p2� . (8)

The first terms (/ gµ⌫) are CP-even and describe the SM coupling structure, while the second terms
(/ "µ⌫⇢�p1⇢p2�) are CP-odd and arise from the CP-odd dimension-six operators. The choice d̃ = d̃B
gives the same coe�cients multiplying the CP-odd structure for HW+W�, HZZ and H�� vertices and a
vanishing coupling for the HZ� vertex.

The matrix elementM for VBF production is the sum of a CP-even contributionMSM from the SM and
a CP-odd contributionMCP-odd from the dimension-six operators considered:

M =MSM + d̃ · MCP-odd. (9)

The di↵erential cross section or squared matrix element has three contributions:

|M|2 = |MSM|2 + d̃ · 2 Re(M⇤SMMCP-odd) + d̃2 · |MCP-odd|2 . (10)

The first term |MSM|2 and third term d̃2 · |MCP-odd|2 are both CP-even and hence do not yield a source
of CP violation. The second term d̃ · 2 Re(M⇤SMMCP-odd), stemming from the interference of the two
contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs
sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore
does not contribute to the total cross section and observed event yield after applying CP-symmetric selec-
tion criteria. The third term increases the total cross section by an amount quadratic in d̃, but this is not
exploited in the analysis presented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean
value of a CP-odd observable hOCPi. If CP invariance holds, the mean value has to vanish hOCPi = 0.
An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd
observable for Higgs boson production in VBF, the “signed” di↵erence in the azimuthal angle between
the two tagging jets �� j j, was suggested in Ref. [22] and is formally defined as:

✏µ⌫⇢�bµ+p⌫+b⇢�p�� = 2pT+pT� sin(�+ � ��) = 2pT+pT� sin�� j j . (11)

Here bµ+ and bµ� denote the normalised four-momenta of the two proton beams, circulating clockwise and
anti-clockwise, and pµ+ (�+) and pµ� (��) denote the four-momenta (azimuthal angles) of the two tagging
jets, where p+ (p�) points into the same detector hemisphere as bµ+ (bµ�). This ordering of the tagging jets
by hemispheres removes the sign ambiguity in the standard definition of �� j j.
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p1,2 denoting the momenta of the gauge bosons:

T µ⌫(p1, p2) =
X

V=W,Z

2m2
V

v
gµ⌫ +

X

V=W,Z,�

2g
mW

d̃ "µ⌫⇢�p1⇢p2� . (8)

The first terms (/ gµ⌫) are CP-even and describe the SM coupling structure, while the second terms
(/ "µ⌫⇢�p1⇢p2�) are CP-odd and arise from the CP-odd dimension-six operators. The choice d̃ = d̃B
gives the same coe�cients multiplying the CP-odd structure for HW+W�, HZZ and H�� vertices and a
vanishing coupling for the HZ� vertex.

The matrix elementM for VBF production is the sum of a CP-even contributionMSM from the SM and
a CP-odd contributionMCP-odd from the dimension-six operators considered:

M =MSM + d̃ · MCP-odd. (9)

The di↵erential cross section or squared matrix element has three contributions:

|M|2 = |MSM|2 + d̃ · 2 Re(M⇤SMMCP-odd) + d̃2 · |MCP-odd|2 . (10)

The first term |MSM|2 and third term d̃2 · |MCP-odd|2 are both CP-even and hence do not yield a source
of CP violation. The second term d̃ · 2 Re(M⇤SMMCP-odd), stemming from the interference of the two
contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs
sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore
does not contribute to the total cross section and observed event yield after applying CP-symmetric selec-
tion criteria. The third term increases the total cross section by an amount quadratic in d̃, but this is not
exploited in the analysis presented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean
value of a CP-odd observable hOCPi. If CP invariance holds, the mean value has to vanish hOCPi = 0.
An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd
observable for Higgs boson production in VBF, the “signed” di↵erence in the azimuthal angle between
the two tagging jets �� j j, was suggested in Ref. [22] and is formally defined as:

✏µ⌫⇢�bµ+p⌫+b⇢�p�� = 2pT+pT� sin(�+ � ��) = 2pT+pT� sin�� j j . (11)

Here bµ+ and bµ� denote the normalised four-momenta of the two proton beams, circulating clockwise and
anti-clockwise, and pµ+ (�+) and pµ� (��) denote the four-momenta (azimuthal angles) of the two tagging
jets, where p+ (p�) points into the same detector hemisphere as bµ+ (bµ�). This ordering of the tagging jets
by hemispheres removes the sign ambiguity in the standard definition of �� j j.
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Define the “optimal observable”

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven
phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting
momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observ-
able combines the information of the high-dimensional phase space in a single observable, which can be
shown to have the highest sensitivity for small values of the parameter of interest and neglects contribu-
tions proportional to d̃2 in the matrix element. The method was first suggested for the estimation of a
single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribu-
tion [18] using the so-called Optimal Observable of first order. The extension to several parameters and
also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Ob-
servable of second order was introduced in Refs. [19, 27, 28]. The technique has been applied in various
experimental analyses, e.g. Refs. [15, 29–39].

The analysis presented here uses only the first-order Optimal Observable OO (called Optimal Observable
below) for the measurement of d̃ via maximum-likelihood fit to the full distribution. It is defined as the
ratio of the interference term in the matrix element to the SM contribution:

OO = 2 Re(M⇤SMMCP-odd)
|MSM|2 . (12)

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for
two non-zero d̃ values, which introduce an asymmetry into the distribution and yield a non-vanishing
mean value.

Optimal Observable
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fr
ac

tio
n 

of
 e

ve
nt

s 
/ 0

.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 = 0)d~SM (
 = 0.1d~

 = - 0.6d~

ATLAS Simulation
 = 8 TeVs

Figure 1: Distribution of the Optimal Observable at parton-level for two arbitrary d̃ values. The SM sample was
generated using MadGraph5_aMC@NLO [40] (see Sect. 5) at leading order, and then reweighted to di↵erent d̃
values. Events are chosen such that there are at least two outgoing partons with pT > 25 GeV, |⌘| < 4.5, large
invariant mass (m(p1, p2) > 500 GeV) and large pseudorapidity gap (�⌘(p1, p2) > 2.8 ).

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are
extracted from HAWK [41–43]. The evaluation requires the four-momenta of the Higgs boson and the
two tagging jets. The momentum fraction x1 (x2) of the initial-state parton from the proton moving in
the positive (negative) z-direction can be derived by exploiting energy–momentum conservation from the
Higgs boson and tagging jet four-momenta as:

xreco
1/2 =

mH j jp
s

e±yH j j (13)

6

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven
phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting
momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observ-
able combines the information of the high-dimensional phase space in a single observable, which can be
shown to have the highest sensitivity for small values of the parameter of interest and neglects contribu-
tions proportional to d̃2 in the matrix element. The method was first suggested for the estimation of a
single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribu-
tion [18] using the so-called Optimal Observable of first order. The extension to several parameters and
also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Ob-
servable of second order was introduced in Refs. [19, 27, 28]. The technique has been applied in various
experimental analyses, e.g. Refs. [15, 29–39].

The analysis presented here uses only the first-order Optimal Observable OO (called Optimal Observable
below) for the measurement of d̃ via maximum-likelihood fit to the full distribution. It is defined as the
ratio of the interference term in the matrix element to the SM contribution:

OO = 2 Re(M⇤SMMCP-odd)
|MSM|2 . (12)

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for
two non-zero d̃ values, which introduce an asymmetry into the distribution and yield a non-vanishing
mean value.

Optimal Observable
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fr
ac

tio
n 

of
 e

ve
nt

s 
/ 0

.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 = 0)d~SM (
 = 0.1d~

 = - 0.6d~

ATLAS Simulation
 = 8 TeVs

Figure 1: Distribution of the Optimal Observable at parton-level for two arbitrary d̃ values. The SM sample was
generated using MadGraph5_aMC@NLO [40] (see Sect. 5) at leading order, and then reweighted to di↵erent d̃
values. Events are chosen such that there are at least two outgoing partons with pT > 25 GeV, |⌘| < 4.5, large
invariant mass (m(p1, p2) > 500 GeV) and large pseudorapidity gap (�⌘(p1, p2) > 2.8 ).

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are
extracted from HAWK [41–43]. The evaluation requires the four-momenta of the Higgs boson and the
two tagging jets. The momentum fraction x1 (x2) of the initial-state parton from the proton moving in
the positive (negative) z-direction can be derived by exploiting energy–momentum conservation from the
Higgs boson and tagging jet four-momenta as:
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Process ⌧lep⌧lep ⌧lep⌧had

Data 54 68
VBF H ! ⌧⌧/WW 9.8±2.1 16.7±4.1

Z ! ⌧⌧ 19.6±1.0 19.1±2.2
Fake lepton/⌧ 2.3±0.3 24.1±1.5
tt̄ +single-top 3.8±1.0 4.8±0.7

Others 11.5±1.7 5.3±1.6
ggH/VH, H ! ⌧⌧/WW 1.6±0.2 2.5±0.7

Sum of backgrounds 38.9±2.3 55.8±3.3

Table 2: Event yields in the signal region, after the global fit performed for the d̃ = 0 hypothesis. The errors include
systematic uncertainties.
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Figure 5: Distributions of the Optimal Observable in the signal region for the (a) ⌧lep⌧lep and (b) ⌧lep⌧had channel,
after the global fit performed for the d̃ = 0 hypothesis. The best-fit signal strength is µ = 1.55+0.87

�0.76. The “Other”
backgrounds include diboson and Z ! ``. The error bands include all uncertainties.
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8 Results

The mean value of the Optimal Observable for the signal is expected to be zero for a CP-even case, while
there may be deviations in case of CP-violating e↵ects. A mean value of zero is also expected for the
background, as has been demonstrated. Hence, the mean value in data should also be consistent with zero
if there are no CP-violating e↵ects within the precision of this measurement. The observed values for the
mean value in data inside the signal regions are 0.3 ± 0.5 for ⌧lep⌧lep and �0.3 ± 0.4 for ⌧lep⌧had, fully
consistent with zero within statistical uncertainties and thus showing no hint of CP violation.
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 (Obs.)hadτlepτ

 (Obs.)lepτlepτ

=1.55)µ=0, d~Expected (

σ1

ATLAS
-1 = 8 TeV, 20.3 fbs

Fit to Optimal Observable

Figure 6: Observed and expected �NLL as a function of the d̃ values defining the underlying signal hypothesis, for
⌧lep⌧lep (green), ⌧lep⌧had (red) and their combination (black). The best-fit values of all nuisance parameters from the
combined fit at each d̃ point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even
VBF signal (d̃ = 0), scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in
blue. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global
maximum-likelihood fit to the Optimal Observable distributions in data. The observed distribution of
�NLL as a function of the CP-mixing parameter d̃ for the individual channels separately, and for their
combination, is shown in Fig. 6. The ⌧lep⌧lep and ⌧lep⌧had curves use the best-fit values of all nuisance
parameters from the combined fit at each d̃ point. The expected curve is calculated assuming no CP-odd
coupling, with the H ! ⌧⌧ signal scaled to the signal-strength value (µ = 1.55+0.87

�0.76) determined from
the fit for d̃ = 0. In the absence of CP violation the curve is expected to have a minimum at d̃ = 0.
Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations
in the considered variable, for large d̃ values there is no further discrimination power and thus the �NLL
curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP
violation. The regions d̃ < �0.11 and d̃ > 0.05 are excluded at 68% CL. The expected confidence intervals
are [�0.08, 0.08] ([�0.18, 0.18]) for an assumed signal strength of µ = 1.55 (1.0). The constraints on the
CP mixing parameter d̃ based on VBF production can be directly compared to those obtained by studying
the Higgs boson decays into vector bosons, as the same relation between the HWW and HZZ couplings
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CP-odd operators
Run 1 analyses have studied CP properties in Higgs decays to gauge bosons 

Combining VBF production measurements with decay studies  
can give access to multiple operators 

Can access to triple-gauge coupling CP-odd operator  
through VBF W & Z production
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DRAFT

1. Introduction44

The non-abelian nature of the Standard Model (SM) electroweak theory predicts the self-interactions45

of the weak gauge bosons. These triple and quartic gauge couplings provide a unique means to test46

for new fundamental interactions. The fusion of electroweak bosons is a particularly important process47

for measuring particle properties, such as the couplings of the Higgs boson, and for searching for new48

particles beyond the Standard Model [1–7]. In proton–proton (pp) collisions, a characteristic signature of49

these processes is the production of two high-momentum jets of hadrons at small angles with respect to the50

incoming proton beams [8]. The observation and measurement of weak bosons produced in this vector-51

boson-fusion (VBF) topology have been achieved in W [9], Z [10, 11] and Higgs [12] boson production.52

The production of a W boson in association with two or more jets (W j j) is dominated by processes in-53

volving the strong interaction. These processes have been studied extensively by experiments at the Large54

Hadron Collider (LHC) [13, 14] and the Tevatron collider [15, 16], motivating the development of pre-55

cise perturbative predictions [17–29]. The analysis presented here addresses the challenge of separating56

the electroweak W j j (EW W j j) process, in which VBF W-boson production is a component, from the57

dominant process of strong W j j (QCD W j j) production. The large cross section for W-boson production58

provides greater sensitivity to the VBF topology than corresponding measurements of Z or Higgs boson59

production.60

The VBF process is gauge-inseparable from other electroweak W j j processes, therefore it is not meas-61

ured directly; sensitivity to the VBF production mechanism is quantified by determining constraints on62

operator coe�cients in an e↵ective Lagrangian approach [30]. The classes of electroweak diagrams con-63

stituting the signal are shown in Fig. 1 [31] and contain four vertices where an electroweak gauge boson64

connects to a pair of fermions. The background from a W boson associated with strongly produced jets is65

shown in Fig. 2 and has only two electroweak vertices. This background has O(10) times the yield of the66

signal process, and can interfere with the signal. This interference is however suppressed by the colour67

flow in the background process [32], and is a small fraction of the electroweak signal production.68

Z/�⇤

W± W±
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q0i q0f

⌫

`

(a) Weak boson fusion

W/Z/�⇤

W±

qi
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q0i

q0f

⌫

`

(b) Bremsstrahlung-like

Z/�⇤

W±

qi
qf

q0i q0f

⌫

`

(c) Non-resonant

Figure 1: Representative leading-order diagrams for electroweak W j j production at the LHC. In addition to (a) the
weak boson fusion process, there are four (b) bremsstrahlung-like diagrams, corresponding to W± boson radiation
by any incoming or outgoing quark, and two (c) non-resonant diagrams, corresponding to W± boson radiation by
either incoming quark.

The analysis signature consists of a neutrino and an electron or muon, two jets with a high dijet invariant69

mass, and no additional jets at a wide angle from the beam. This signature discriminates signal events70

from the copious background events consisting of strongly produced jets associated with a W (or Z)71
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Summary
Run 1 focus on Higgs search has given way to Run 2 focus on Higgs 

measurement 

Many measurements: use EFT as a self-consistent probe of higher scales 

Proof-of-principle fits have constrained a subset of dimension-6 operators: 
path to constrain 22 operators demonstrated in this talk 

Discussions ongoing within Higgs, top, and electroweak group to interpret 
results in EFT 

Combination at end of Run 2 could constrain nearly all Higgs-related 
operators plus several 4-fermion and gauge boson self-coupling operators 

Will provide a clearer picture on the possible scale of new physics 
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