

T2K and **NuPRISM**: An experimental solution to the problems of neutrino interactions in long baseline neutrino experiments

Mark Scott University of Liverpool 20th July 2016

Outline

- Brief history and physics of neutrino oscillations
- Long baseline neutrino oscillations
 - T2K experiment
 - Oscillation analysis method
 - Latest oscillation results
- NuPRISM
 - Physics concept
 - NuPRISM in oscillations
 - Cross-sections and sterile neutrinos
 - Current status

Neutrinos...

- Neutral partner to charged leptons
- 2nd most abundant particle in nature
- Almost zero mass
- Interact very rarely
 - Only through weak force
 - Billions pass through every cm² per second

Neutrino oscillation

SNO - electron neutrinos made up ~1/3rd total solar neutrino flux

Super-Kamiokande – Atmospheric neutrino rate depends on path length

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

Mark Scott, TRIUMF

Neutrino oscillation

- Neutrinos have two sets of eigenstates – flavour and mass
 - Interact through flavour states
 - Propagate in mass states

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 $0 \qquad \sqrt{\frac{1}{6}} \qquad \sqrt{\frac{1}{3}} \qquad \sqrt{\frac{1}{2}} \qquad \sqrt{\frac{2}{3}}$

$$P_{\alpha \rightarrow \beta} = \left| \langle \mathbf{v}_{\beta} | \mathbf{v}_{\alpha}(t) \rangle \right|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2}$$

- Experiments sample neutrino flavour states after oscillation
 - Oscillation probability is function of neutrino energy, *E*, and propagation distance *L*
 - Measuring flavour composition of neutrino flux as function of L/E probes PMNS mixing matrix U and mass splitting

Neutrino oscillation

- KamLAND experiment:
- Surrounded by nuclear reactors
 - Same energy neutrinos
 - Different distances
- Directly measured disappearance and reappearance

- Neutrinos oscillate between the different flavours
 - Neutrinos are massive particles
 - First (and only) experimentally observed BSM physics

What do we know?

 $\theta_{23} = 45.8^{o} \pm 3.2^{o} \quad \theta_{13} = 8.51^{o} \pm 0.23^{o} \quad \theta_{12} = 33.5^{o} \pm 0.8^{o}$

- Also have two mass splittings: $|\Delta m_{32}^2| = (2.42 \pm 0.06) \times 10^{-3} \text{ eV}^2$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$
- Currently don't know:

• sin
$$\delta_{CP} \neq 0$$

• Sign(Δm_{32}^2) - Mass Hierarchy

•
$$\theta_{23} > 45^{\circ}$$
 - Octant

How do we measure these parameters?

PDG 2015

30/09/16

Mark Scott, TRIUMF

Measuring neutrino oscillations

- Leading terms for v_{μ} disappearance and v_{e} appearance

$$P(v_{\mu} \rightarrow v_{\mu}) \cong 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

 $P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} |$

ИF

 $\Delta m_{31}^2 L$

4E

Measuring neutrino oscillations

- Leading terms for v_{μ} disappearance and v_{e} appearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \cong 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

 $P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \theta_{23}$

 Need to sample spectrum at different values of L/E

 $\Delta m_{31}^2 L$

- Build two detectors
 - One close to
 neutrino source
 - Other at maximal oscillation

Tokai to Kamioka (T2K) experiment

Mark Scott, TRIUMF

Creating neutrino beams

- Tertiary beam:
 - Protons produce hadrons
 - Hadrons focussed by magnetic horns
 - Hadrons decay in flight
 - Neutrino 'beam'

Off-axis effect

- Two-body pion decay
- Angle and energy of neutrino directly linked
- Moving off axis:
 - Lower peak energy
 - Smaller high energy tail
 - Less energy spread

The Near Detectors at 280m

Interactive Neutrino GRID

- 7 x 7 cross
- Iron and plastic scintillator sheets
- Measures neutrino beam direction to < 1mrad

ND280 Off-axis detector

- Fine-grained (FGD) target vertex reconstruction
- Magnet + TPC precise momentum, charge and PID
- Characterise neutrino beam

Types of neutrino interaction

Three principal types of neutrino interaction – occur as both charged current (CC) and neutral current processes

ND280 data

Selection:

- Identify highest momentum muon-like track
 - Charge differentiates neutrino from anti-neutrino
- Separate by number of tagged pions
 - Anti-neutrino samples separated into 1-track and N-track
- Select v and anti-v events in anti-v beam to constrain wrong-sign backgrounds

ND280 data

Selection:

- Identify highest momentum muon-like track
 - Charge differentiates neutrino from anti-neutrino
- Separate by number of tagged pions
 - Anti-neutrino samples separated into 1-track and N-track
- Select v and anti-v events in anti-v beam to constrain wrong-sign backgrounds

T2K neutrino

G. Zelle

Neutrino cross-sections

Neutrino interaction crosssections have ~10% uncertainty:

- Nuclear environment has large effect on interaction
 - Cannot calculate from first principles
- Existing data has large uncertainties

icertainty: ent has eraction te from first arge $\begin{bmatrix} 0.8\\ 0.4\\ 0.2\\ 0 \end{bmatrix}$ $\begin{bmatrix} 0.8\\ 0.6\\ 0.4\\ 0 \end{bmatrix}$ $\begin{bmatrix} 0.6\\ 0.4\\ 0\\ 0 \end{bmatrix}$ $\begin{bmatrix} 0.6\\ 0.4\\ 0\\ 0\\ 0\end{bmatrix}$ $\begin{bmatrix} 0.6\\ 0\\ 0\\ 0\\ 0\end{bmatrix}$ $\begin{bmatrix} 0.6\\ 0\\ 0\end{bmatrix}$ $\begin{bmatrix}$

Charged current quasi-elastic interactions are primary signal

- But, other interactions mimic CCQE
 - Detector effects, final state interactions
- Need to understand multiple interaction modes over range of neutrino energies

Cannot directly measure neutrino flux – known to \sim 8% level at T2K

T2K near detector analysis **RIUMF**

Detectors measure interaction rate:

- Flux * Cross-section
- Joint fit of models to ND280 data allows constraint on rate
 - Anti-correlate flux and cross-section uncertainty
- Propagate tuned models to far detector

ND280 fit

- Model parameters shifted from prior values
- Parameter uncertainties reduced
 - Absolute errors smaller
 - Anti-correlated
- Test model dependence using fit
 - More on this later!

T2K oscillation analysis

TZK

Far detector measurement

Signal in far detector:

- Measure rate of muonlike and electron-like events
- CCQE interactions are 'golden' channel

⁽c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

- Assume nucleon at rest 2-body process
- Can calculate neutrino energy from observed muon kinematics

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

SK v event selection

Look for fully contained, single ring events inside SK fiducial volume, then:

If muon-like ring:

- Reconstructed momentum > 200 MeV/c
- At most 1 decay electron

If electron-like ring:

- Reconstructed momentum > 100 MeV/c
- Reconstructed energy < 1250 MeV
- No decay electrons
- Not identified as π^0

T2K oscillation analysis

Joint oscillation analysis

What?

- Fit both electron-like sample and muon-like sample
- Fit both neutrino beam mode and anti-neutrino beam mode data

How?

- Maximise a likelihood: $\mathcal{L} = \mathcal{L}_{\text{Data}} * \mathcal{L}_{\text{Flux}} * \mathcal{L}_{\text{XSec}} * \mathcal{L}_{\text{SK detector}}$
- Prior constraints on flux and cross-section parameters from near detector fit

SK data samples

- Unoscillated prediction (blue)
- Best-fit spectrum (red)
- Three independent analyses
- Bayesian and frequentist
- All give consistent results

Mark Scott, TRIUMF

$\delta_{CP} VS. \theta_{13}$

Left: δ_{CP} vs. θ_{13} (fixed $\Delta \chi^2$, fixed hierarchy)

- T2K-only
- T2K with reactor $\sin^2 2\theta_{13} = 0.085 \pm 0.005$

Below: δ_{CP} with Feldman-Cousins critical values and reactor θ_{13} $\delta_{CP} = [-3.02, -0.49]$ (NH), [-1.87, -0.98] (IH) @90% CL

Future long-baseline neutrino oscillation measurements

Discovering leptonic CP violation

- T2K Phase 2 sensitive to maximal CP violation at 3σ , Hyper-K sensitive at 5σ over range of values of δ_{CP}
- Future long-baseline neutrino oscillation experiments will be systematics limited!

Systematics at T2K

- Uncertainty on δ_{CP} measurement dominated by:
 - Neutrino interaction uncertainties 3.9%
 - Final state (FSI) and secondary interaction (SI) uncertainties 3.7%

- No clear picture from dedicated cross-section experiments
- Limiting systematic errors from theory
 - Multi-nucleon events...

Multi-nucleon events

- SK uses lepton kinematics to infer neutrino energy
 - Assumes neutrino scattered from single nucleon at rest
- Multi-nucleon events indistinguishable • from single nucleon events at SK
 - Assumption no longer valid
 - Energy reconstruction is **biased**
 - (Also true for calorimetric methods)

UMF

Multi-nucleon events

- Many different theoretical models
 - Martini vs Nieves shown on right •
 - ~15% of CCQE-like cross-section
 - Can differ greatly in predicted event rates
 - Predict different rates for neutrinos vs anti-neutrinos
 - Hard to separate models • experimentally

MF

Cross-section experiments

Fiorentini et al. Phys. Rev. Lett. 111, 022502 (2013) CCQE cross-section using muon kinematics

Walton et al. Phys. Rev. D 91, 071301 (2015) CCQE cross-section using proton kinematics

- MINERvA results for muon CCQE-like cross-sections
 - Neutrino energies from ~1.5 GeV up to 10 GeV
- Ratio to GENIE prediction versus cross-section models
- Muon kinematics weakly prefers TEM model, proton weakly prefers nominal GENIE – no model is consistent with the MiniBooNE and MINERvA data

How does this affect oscillation analyses?

- At maximum oscillation, neutrino flux goes to zero
- Biased energy reconstruction smears multi-nucleon events into oscillation dip
- At near detector, effect of multi-nucleon events 'hidden' under neutrino flux hard to constrain

T2K

T2K multi-nucleon study

- MC-based analysis using full detector simulation, full systematics etc.
- Three fake datasets
 - Nominal NEUT MC
 - NEUT + meson exchange current (MEC) events from Nieves' model -Phys. Rev. C, 83:045501, Apr 2011
 - NEUT + MEC events based on Martini's model -Phys. Rev. C, 81:045502, Apr 2010
- Perform disappearance fit to extract θ_{23} in each case and compare

- Models give ~3.5% RMS in $\sin^2 \theta_{23}$, Martini model introduces ~3% bias
- More recent studies with other nuclear models show similar effects

Mark Scott, TRIUMF

T2K

T2K fake data studies

- Investigate effect of interaction model choice on latest T2K oscillation results
- MC-based using analysis framework described earlier
 - Create fake data with alternate model
 - Fit near and far detector fake data with nominal model
 - Look at change in best fit oscillation parameters and SK event rates

• Fractional change in CC-0 π and CC-1 π samples at ND280 between Relativistic Fermi Gas (RFG) and Spectral Function (SF) nuclear models

RFG vs SF

3/

Look at change in best fit model parameters and predicted SK spectrum

Mark Scott, IKIUMF

- T2K oscillation parameter sensitivity with and without systematics above
- Current analysis dominated by statistical uncertainties not yet sensitive to effect of nuclear models

	$\delta_{N_{SK}}/N_{SK}$ (%)				
	1-Ring μ		1-Ring e		
Error Type	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	$\nu/\bar{\nu}$
SK Detector	4.6	3.9	2.8	4.0	1.9
SK Final State & Secondary Interactions	1.8	2.4	2.6	2.7	3.7
ND280 Constrained Flux & Cross-section	2.6	3.0	3.0	3.5	2.4
$\sigma_{ u_e}/\sigma_{ u_\mu}, \sigma_{ar u_e}/\sigma_{ar u_\mu}$	0.0	0.0	2.6	1.5	3.1
NC 1γ Cross-section	0.0	0.0	1.4	2.7	1.5
NC Other Cross-section	0.7	0.7	0.2	0.3	0.2
Total Systematic Error	5.6	5.5	5.7	6.8	5.6
External Constraint on θ_{12} , θ_{13} , Δm_{21}^2	0.0	0.0	4.2	4.0	0.1

Effect of model choices

- Take fractional change in SK event rate prediction between fake data fits and Asimov samples
- Directly comparable to previous table

Fake data	$1R_{\mu}$	$1R_e$	RHC $1R_{\mu}$	RHC $1R_e$	$\frac{1R_e}{\text{RHC }1R_e}$	$rac{1 R_{\mu}}{ ext{RHC} \ 1 R_{\mu}}$
SF	3.91	5.58	3.92	3.55	1.18	-0.38
ERPA	0.30	2.19	-1.02	-1.21	3.60	1.14
Martini with $\bar{\nu}$ 2p-2h parameter	2.86	1.94	1.19	0.69	0.79	2.31
PDD-like $2p-2h$	-0.04	-0.72	1.32	3.48	-4.57	-1.24
NonPDD-like $2p-2h$	3.31	3.49	3.33	1.39	2.85	0.15
Nieves-NEUT $1p-1h$ with ND280 error	2.69	3.37	3.31	3.27	-1.66	-0.53

- Electron neutrino / anti-neutrino rate highlighted
 - Direct measure of uncertainty in CP violation measurement
- Model choice gives shift equal to current systematic uncertainties

JMF

T2K Preliminary

NuPrism

NuPrism:

An experimental solution to the problems of neutrino interactions in long baseline neutrino experiments

NuPRISM

NuPRISM

- Water Cherenkov detector spanning 1° 4° from the neutrino beam axis
 - 52.5m tall if 1km from neutrino production target
- Instrument movable cylinder:
 - Inner Detector (ID): 8m diameter, 10m tall
 - Outer Detector (OD): 10m diameter, 14m tall
- Same nuclear target and acceptance as far detector
- Smaller near-to-far flux extrapolation uncertainty

NuPRISM concept

NuPRISM concept

NuPRISM concept

NuPrism Mono-energetic beams

Mono-energetic beams

Mono-energetic beams

Mono-energetic beams in practice

- Gaussian neutrino beams with neutrino energy from 400 MeV \rightarrow 1200 MeV
 - Determined by off-axis angular span of detector
- Full T2K flux error shown
- High energy tail almost completely cancelled

NuPRISM

IUMF

NuPRISM How can we use them?

- Provides more information on neutrino interactions
- Clear separation between quasi-elastic (QE) and non-QE events
- Measure in data:
 - As function of true neutrino energy
 - In same detector \rightarrow highly correlated flux and detector systematics

NuPRISM How can we use them?

- Provides more information on neutrino interactions
- Clear separation between quasi-elastic (QE) and non-QE events
- Measure in data:
 - As function of true neutrino energy
 - In same detector \rightarrow highly correlated flux and detector systematics
 - Can also calculate true Q² and ω

vPRISM detector concept **NuPrism**

NuPRISM vPRISM detector concept

TRIUMF

Nuprism vPRISM detector concept

- Recreate oscillated neutrino flux at SK using near detector
- Directly measure muon $p-\theta$ for given value of oscillation parameters

NUPRISM V Oscillation with NuPRISM **RIVE**

- Event rate = $Flux(E_v) * Cross-section(E_v) * Efficiency$
- NuPRISM and SK have water target same interaction cross-section
- If fluxes (and efficiency) match:
 - NuPRISM linear combination event rate == oscillated SK event rate
 - No cross-section model, no effect from wrong model choice
 - Directly compare to SK data to get oscillation parameters

NUPRISM v Oscillation with NuPRISM &

0.6

0.8

1.2

1.4 E_v (GeV

20000

0.2

0.4

- Red directly measured in NuPRISM data
- Blue flux fit difference correction
- Magenta Acceptance correction
 - NuPRISM only 8m wide
 - Can contain muons up to ~1.2GeV
- Green SK background correction
 - Cancelation with bkg subtracted at NuPRISM
- Majority of SK prediction directly measured

Mark Scott, TRIUMF

ИГ

NuPrism Multi-nucleon events

- Add multi-nucleon events to SK and NuPRISM MC to create fake dataset
 - Neutrino interaction model does not include these events
- Redo linear combinations using fake data
- NuPRISM correctly predicts SK event rate!

SK 1 Ring μ Prediction

NuPRISM Effect of multi-nucleon Standard T2K events at vPRISM

- Add np-nh events (Nieves and Martini models) to T2K fake data
- Perform disappearance fit to extract θ_{23}
- Compare to result from fit to nominal fake data

RIUMF

T2K 2016 systematics

	$\delta_{N_{SK}}/N_{SK}$ (%)				
	1-Ring μ		1-Ring e		
Error Type	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	$\nu/\bar{\nu}$
SK Detector	4.6	3.9	2.8	4.0	1.9
SK Final State & Secondary Interactions	1.8	2.4	2.6	2.7	3.7
ND280 Constrained Flux & Cross-section	2.6	3.0	3.0	3.5	2.4
$\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$	0.0	0.0	2.6	1.5	3.1
NC 1γ Cross-section	0.0	0.0	1.4	2.7	1.5
NC Other Cross-section	0.7	0.7	0.2	0.3	0.2
Total Systematic Error	5.6	5.5	5.7	6.8	5.6
External Constraint on $\theta_{12}, \theta_{13}, \Delta m_{21}^2$	0.0	0.0	4.2	4.0	0.1

- CP measurement depends on uncertainty on v_e /anti- v_e ratio
- Dominant uncertainties from theory
 - Final state interactions (FSI), secondary interactions (SI) nuclear model extrapolation from pion-nucleus scattering experiments
 - Electron/Muon cross-section ratios ND280 does not have statistical power to constrain to 3% in region of interest
- ND280 constraint affected by nuclear model uncertainties

 v_{α} cross-section

- Current uncertainty based on theory
 - ~3.5% uncertainty on CP violation measurement

- Hyper-K sensitivity to observe CP violation for various uncertainties on $\nu_{\rm e}$ cross-section
- Significantly degrade sensitivity

NuPrism

 v_{α} cross-section

- Current uncertainty based on theory
 - ~3.5% uncertainty on CP violation measurement
- We should measure this!

1-Ring e Candidates

- Expect ~5000 events < 2 GeV per 1e²¹ POT at 73% purity
 - Compared to ~500 at ND280 in this energy region
- Conservative error estimate of <5%, dominated by flux ratio uncertainty
 - Replica target data will reduce flux ratio uncertainty

Mark Scott, TRIUMF

- 3 stage approach
 - Match SK v_e appearance flux using NuPRISM v_{μ} flux
 - Match NuPRISM instrinsic v_e flux using NuPRISM v_{μ} flux measure cross-section ratio with same flux
 - Measure beam and NC backgrounds using 2.5° NuPRISM flux

NuPrism Benefits for v_{a} at NuPRISM **REALT**

- Water Cherenkov detector, same as SK, so can make high purity electron-neutrino sample
- Going off-axis increases relative fraction of intrinsic electron neutrinos in beam
 Off-axis ve Flux vu Flux Ratio
- Large statistics
- Matching fluxes
 - For appearance signal
 - Nuclear effects
 - FSI, SI
 - All cancel!
 - For cross-section
 - Same interaction modes
 - Same energy dependence
- Dominant, theory driven systematics cancelled out experimentally

Off-axis angle (°)	ve Flux 0.3-0.9 GeV	vµ Flux 0.3-5.0 GeV	Ratio ve/vµ
2.5	1.24E+15	2.46E+17	0.507%
3.0	1.14E+15	1.90E+17	0.600%
3.5	1.00E+15	1.47E+17	0.679%
4.0	8.65E+14	1.14E+17	0.760%

Mark Scott, TRIUMF

NuPRISM Status

- Updated proposal reviewed at the J-PARC PAC in January 2016:
 - http://j-parc.jp/researcher/Hadron/en/pac_1601/pdf/P61_2016-5.pdf
- Summary of the PAC response:
 - "NuPRISM is an excellent proposal... [but] is intimately related to the T2K extension"
 - "The PAC strongly encourages the continuation of R&D studies in close collaboration with the proponents of the T2K-Phase II proposal"
- ICRR-KEK/IPNS review
 - "the accelerator, beam line, near detector, and intermediate detector upgrades for HK should be realized as soon as possible, and will benefit T2K"
- KEK Project Implementation Plan review concluded that the upgrades for Hyper-Kamiokande have the highest priority
- Working with T2K to put forward joint statement on NuPRISM for T2K-II
- Working with TITUS (an alternative proposal) towards merger of detectors
- Submitted joint CFI Innovation fund request with Canadian IceCube group
 - CAPSTONE (Canadian Advanced PhotoSensor TechnOlogy for Neutrino Experiments), developing a multi-PMT photosensor for NuPRISM and PINGU

NuPRISM Phase 0

- Funding for detector pit available ~2020
 - Want to start before then...
- Fully instrumented detector on surface at ND280 site
 - 9 to 12 degrees off-axis
 - Low enough rate for water Cherenkov
 - Larger fraction of electron neutrinos in beam
 - Electron neutrino energy ~700 MeV
 - Test calibration procedure to reach necessary detector systematic precision
 - High statistics measurement of ν_{e} / ν_{μ} cross section

Summary

Oscillation experiments will be limited by systematics not statistics

Dominant systematics hard to constrain with traditional near detectors

The NuPRISM detector provides a solution

- Same nuclear target and acceptance as SK
- Same signal + background
 - If near and far fluxes match systematics cancel
 - Oscillation analyses independent of interaction model

NuPRISM also enables:

- Unique probe of cross-sections
- Powerful sterile neutrino searches
- Tests of new water Cherenkov technologies

NuPRISM project gaining momentum – NuPRISM Phase 0

New collaborators welcome!

Backup Slides

Nuprism Discussion of T2K results

Observe

- more ve candidates than predicted
- fewer \bar{v}_e candidates than predicted

in the case of NH, δ_{CP} = - $\pi/2$ that induces the largest asymmetry

observed vs. expected number of v_e and v_e candidates

		EXPECTED (NH, $sin^2\Theta_{23}=0.528$)			
	OBS.	δ _{CP} =-π/2	δ _{CP} =0	$\delta_{CP} = +\pi/2$	δ _{CP} =π
Ve	32	27.0	22.7	18.5	22.7
\overline{v}_e	4	6.0	6.9	7.7	6.8

- 20 2lnL 18 68.27% of toys MC Normal Hierarchy 16 95.45% of toys MC Mean Exp. -2lnL 14 $-2lnL_{crit}$ (90% CL) 12 $-2lnL_{crit}$ (2 σ CL) 10 -Data 8 2 0 -3 -2 -1 0 2 3 1 $\boldsymbol{\delta}_{CP}$
- Toy MC run to assess probability of outcome given a set of "true" parameters
- Below: fraction where δ_{CP} =0 excluded at 90% or 2 σ CL for NH, δ_{CP} = - $\pi/2, 0$

	TRUE PARAMETERS			
	δ_{CP} =- $\pi/2$, NH	$\delta_{CP}=0$, NH		
90%	0.187	0.102		
2 σ	0.089	0.047		

UMF

NuppismEffect of oscillationon near detector extrapolation

- Near detector event spectrum on left, oscillated far detector spectrum on right
- Near detector tunes to 500 700 MeV events, far detector sees higher energy events
 - Can lead to biased tuning

JMF

- Ankowski et al. Phys. Rev. D 92, 073014 (2015)
- Shaded = perfect knowledge of detector
- Coloured lines amount of 'missing' energy
 - e.g. Incorrectly modelled neutron production rates

MultiPMTs for Hyper-K

For Hyper-K:

- In standard periphery geometry may need different ID and OD. More flexibility for vessel size, hence filling.
- For initial proof of concept studies: replace 20" photocathode area by same number of mPMT modules with 33 3" PMTs.
- Pressure requirement much less stringent than KM3NeT and IceCube-Gen2 (150 atm (Hyper-K) vs 700 atm): explore cheaper acrylic vessel over Benthos glass sphere.
- Start with same 3" PMTs as KM3NeT.

T. Feusels (TRIUMF)

mPMT for ν Prism

- *ν*PRISM nominal: 19 ID PMTs in hexagonal grid, 7 OD PMTs in hexagonal grid. Vessel diameter is 48cm. Cylinder is 29cm.
- Need to find balance between maximizing projected photocathode area and directionality.
- More detailed calculations and optimization in progress at York.

Ring 0 to Ring 1 Angle
NuPRISM Conceptual Design

- Winches on each tower raise and lower detector on rails
- Will need full design by engineers

RIUMF

NuPRISM Short baseline oscillations **RIVAN**

- NuPRISM same L/E range as LSND and MiniBooNE sterile results
- Neutrino flux variation across NuPRISM provides unique capabilities
 - Directly probe oscillation curve
 - Constrain
 backgrounds
 - Energy dependence
 - Direct measurements

Signal and background

Mark Scott, TRIUMF

1.1-1.8 (°)

- Search for ν_e appearance using ν_{μ} events to constrain flux
- Full T2K flux and cross section uncertainties included

Points = Appearance signal Red = Intrinsic v_e bkgd Blue = v_{μ} bkgd

• On-axis (top)

NuPrism

- High ν_{μ} contamination
- Broad signal distribution
- Off-axis (bottom)
 - Very little ν_{μ} contamination
 - Signal peaked at low reconstructed energy

Sterile sensitivity

- NuPRISM neutrino fluxes peak at different energies for a given baseline
- Sterile oscillation has different energy dependency than background cross-sections → can separate them
- Excludes (almost) entire LSND allowed region at 5σ
 - Comparable to Fermilab SBN
- Statistics limited!
 - Expect results to improve:
 - Full reconstruction and selection
 - Direct constraint of backgrounds
 - Include T2K near detector

Gadolinium doping

- Neutrons capture on Gd
 - 49,000b capture cross section
 - 8 MeV gamma cascade, 4-5 MeV visible
 - 0.1% doping → 90% neutrons capture on Gd

- SK planning to load Gd in future increase sensitivity to supernovae
 - Statistically separate neutrino interactions from anti-neutrino
 - Tag proton decay backgrounds
- But, neutron emission from neutrino interactions largely unknown
- NuPRISM can measure this:
 - Mono-energetic neutrino source
 - Neutron capture rates as a function of lepton kinematics

Event Selection

- Same event selection as at SK: Muon Cosθ_{beam} 20 0.8 Single ring 18 0.6 16 **Muon-like** 0.4 14 0.2 12 Fully contained in fiducial volume 0 10 -0.2 8 Muon Cosθ_{beam} -0.4 6 0.8 3.5 1° off-axis -0.6 0.6 3 -0.8 2 0.4 -1₀ 0 2.5 0.5 1.5 2.5 2 3 0.2 1 Muon Momentum (MeV/c) 2 0 -0.2 1.5 -0.4 4° off-axis 1 -0.6 0.5 -0.8 -1₀ 0 0.5 1.5 1 2 2.5 3 Muon Momentum (MeV/c)
 - Record the off-axis angle of the interaction, using the reconstructed vertex position

Mark Scott, TRIUMF

NuPRISM Building the oscillated flux

- All based on simulated neutrino flux at SK and vPRISM
- Slice vPRISM into 60 slices of 0.05 degree assign each a weight
- MINUIT χ^2 fit between sum of weighted vPRISM slices and oscillated SK flux

TRIUMF

NuPrism Building the oscillated flux

Perform fit for all combinations of oscillation parameters used in the oscillation fit

RIUMF

SK prediction

- Apply these weights to the selected events in each off-axis slice of $\ensuremath{\nu\text{PRISM}}$
- Now looking at reconstructed neutrino energy events smeared into oscillation dip by nuclear effects and energy resolution

- To vPRISM data:
 - Flux correction
 - Acceptance correction
 - Addition of selected SK background
- Introduce some model
 dependence

NuPRISM

Systematic uncertainties

- Every correction made to the vPRISM prediction is calculated from our nominal MC all are constant corrections
- To calculate systematic uncertainties:
 - Apply a variation to the vPRISM and SK MC
 - Changes number of selected events at both detectors
 - Apply corrections (from the unvaried, nominal MC)
 - Calculate change in the vPRISM prediction
 - Use this to calculate fractional covariance matrix for vPRISM prediction
- This analysis takes flux and cross section uncertainties into account
 - Conservative detector systematics coming soon!

vPRISM disappearance analysis

- Full analysis using vPRISM as near detector
 - Statistical error from linear combinations
 - Neutrino beam uncertainties direction,
 - Interaction model uncertainties

Mark Scott, TRIUMF

Systematic throws

Look at fake data throws of both flux and cross section uncertainties

- Plots show all 300 throws of the vPRISM prediction (left) and selected SK events (right)
- vPRISM very few events at low or high energy, little variation
- In oscillation region variations similar at SK and vPRISM
- Spectra are ~Gaussian distributed about the central value

NuPrism

Systematic throws

• Plot difference between selected SK events and vPRISM prediction for each throw

- Most of spectrum shows less than 0.5 event difference between SK and νPRISM prediction
- Systematic uncertainties are cancelling between the two detectors

Oscillation fit

- Calculate covariance matrix and vPRISM prediction for various points in θ_{23} and Δm^2 phase space

-log(L) surface for nominal MC

- Use Simple Fitter to calculate likelihood (L)
- Plot ln(L) for all points in θ_{23} and Δm^2
- Minimum bin gives best fit oscillation parameters

Martini MEC result

• Look at effect of adding MEC events to 300 fake data sets

- Much smaller RMS in θ_{23} (left) and Δm^2 (right) than in T2K analysis
- No bias seen in θ_{23} plot
- vPRISM will provide the first data driven constraint on the effect of multi-nucleon events in oscillation measurements

Nieves' result

 Look at the difference in best fit oscillation parameters between the nominal MC and the MC with additional Nieves MEC events

- Much smaller RMS in θ_{23} (left) and Δm^2 (right) than in T2K analysis
- Large spike at 0 difference in both plots

NuPrism A neutrino spectrometer

- Gaussian spectra from ~0.4 GeV to ~1 GeV
 - Depends on off-axis span of vPRISM: 6° 0.25 GeV, 0° 1.2 GeV
- High energy tail cancelled in all cases

NuPRISM Phase 0

- Some considerations: 13 m x 13 m space
- Is there space?
 - Will use EGADs tank + water system to estimate footprint
 - Maybe requires a new (cheap) building
- Sky-shine neutrons
 - Seen at K2K 1T detector
 - Need to measure for T2K beam
- Low energy neutrinos from beam dump or MLF – search for sterile oscillations
- Long-term tests of HK PMTS
- Can put magnetized muon range detector behind tank
 - Calibrate Gd tagging

Beam Timing

Timing (nsec)

Beam Errors

- Haven't we just replaced **unknown cross section errors** with **unknown flux errors**?
 - Yes! But only relative flux errors are important!
 - Cancelation exist between vPRISM and far detector variations
- Normalization uncertainties will cancel in the vPRISM analysis
 - Cancelations persist, even for the vPRISM linear combination
 - Shape errors are most important
- For scale, 10% variation near the dip means
 [~]1% variation in sin²2θ₂₃
 - Although this region is dominated by feed down
- Full flux variations are reasonable
 - No constraint used (yet) from existing near detector!
 - Uncertainties set by NA61 and T2K beam data

Signal Selection/Definition

- Same signal selection as used at Super-K
 - Single, muon-like ring
- Signal events are defined as all true single-ring, muon-like events
 - A muon above Cherenkov threshold
 - All other particles below Cherenkov threshold
- vPRISM can measure single muon response for a given E_v spectrum
 - Signal includes CCQE, multinucleon, CCπ⁺, etc.
 - No need to make individual measurements of each process and extrapolate to T2K flux

Example Signal Event

Event Pileup at 1 km

- Full GEANT4 simulation of water and surrounding sand
 - Using T2K flux and neut cross section model
- 8 beam bunches per spill, separated by 670 ns with a width of 27 ns (FWHM)
- 41% chance of in-bunch OD activity during an ID-contained event
 - Want to avoid vetoing only on OD light (i.e. using scintillator panels)
- 17% of bunches have ID activity from more than 1 interaction
 - 10% of these have no OD activity
 - Need careful reconstruction studies
 - (but multi-ring reconstruction at Super-K works very well)

Pileup Rates at 1 km Look Acceptable!