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Outline
● Brief history and physics of neutrino oscillations

● Long baseline neutrino oscillations
– T2K experiment
– Oscillation analysis method
– Latest oscillation results

● NuPRISM
– Physics concept
– NuPRISM in oscillations
– Cross-sections and sterile neutrinos
– Current status
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Neutrinos...

● Neutral partner to 
charged leptons

● 2nd most abundant 
particle in nature

● Almost zero mass

● Interact very rarely

– Only through 
weak force

– Billions pass 
through every 
cm2 per second 
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Neutrino oscillation

SNO - electron neutrinos made 
up ~1/3rd total solar neutrino flux

Super-Kamiokande – 
Atmospheric neutrino rate 
depends on path length

Art McDonald
2015 Nobel

Takaaki Kajita
2015 Nobel
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● Neutrinos have two sets 
of eigenstates – flavour 
and mass

● Interact through 
flavour states

● Propagate in mass 
states

Pα→β = |⟨νβ∣να(t )⟩|
2
=|∑i

U α i
* Uβ ie

−imi
2 L /2 E|

2

● Experiments sample neutrino flavour states after oscillation
● Oscillation probability is function of neutrino energy, E, and 

propagation distance L
● Measuring flavour composition of neutrino flux as function of L / E 

probes PMNS mixing matrix U and mass splitting

Neutrino oscillation
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●  Neutrinos oscillate between the different flavours
● Neutrinos are massive particles
● First (and only) experimentally observed BSM physics

● KamLAND experiment:

● Surrounded by nuclear 
reactors

– Same energy 
neutrinos

– Different distances

● Directly measured 
disappearance and 
reappearance

Neutrino oscillation
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What do we know?

cij = cos θij

sij = sin θij

Atmospheric Reactor/Beam Solar

θ23 = 45.8º ± 3.2º θ13 = 8.51º ± 0.23º θ12 = 33.5º ± 0.8º

How do we measure these parameters?

●   Also have two mass splittings:

|Δm2
32 | = (2.42 ± 0.06) x 10-3 eV2

Δm2
21 = (7.53 ± 0.18) x 10-5 eV2

●  Currently don't know:

● sin δ
CP

 ≠ 0  

● Sign(Δm2
32 ) - Mass 

Hierarchy
● θ23 > 45º  - Octant

PDG 2015
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Measuring neutrino
oscillations

● Leading terms for ν
μ 

disappearance and 
ν

e 
appearance
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Measuring neutrino
oscillations

● Leading terms for ν
μ 

disappearance and 
ν

e 
appearance

● Need to sample 
spectrum at different 
values of L/E

● Build two detectors
● One close to 

neutrino source
● Other at maximal 

oscillation
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Tokai to Kamioka (T2K) experiment

295 km
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Creating neutrino
beams

● Tertiary beam:
● Protons produce hadrons
● Hadrons focussed by magnetic horns
● Hadrons decay in flight
● Neutrino 'beam'
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Off-axis effect

● Two-body pion decay
● Angle and energy of 

neutrino directly linked
● Moving off axis:

● Lower peak energy
● Smaller high energy tail
● Less energy spread
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The Near Detectors at 280m

Interactive Neutrino GRID
● 7 x 7 cross
● Iron and plastic scintillator 

sheets
● Measures neutrino beam 

direction to < 1mrad

ND280 Off-axis detector
● Fine-grained (FGD) target – 

vertex reconstruction
● Magnet + TPC – precise 

momentum, charge and PID
● Characterise neutrino beam
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Three principal types of neutrino interaction –  occur as both charged 
current (CC) and neutral current processes

No lepton 
produced

Types of neutrino interaction
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ND280 data
Selection:

● Identify highest momentum muon-like 
track
━ Charge differentiates neutrino from 

anti-neutrino
● Separate by number of tagged pions

━ Anti-neutrino samples separated into 
1-track and N-track

● Select ν and anti-ν events in anti-ν beam 
to constrain wrong-sign backgrounds

TPC 1 TPC 2 TPC 3

FGD 1 FGD 2

μ-

μ-

π+

μ-

CC-0π

CC-1π
CC-

Other
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ND280 data
Selection:

● Identify highest momentum muon-like 
track
━ Charge differentiates neutrino from 

anti-neutrino
● Separate by number of tagged pions

━ Anti-neutrino samples separated into 
1-track and N-track

● Select ν and anti-ν events in anti-ν beam 
to constrain wrong-sign backgrounds

TPC 1 TPC 2 TPC 3

FGD 1 FGD 2

μ-

μ-

CC-0π

Neutrino mode 
CC-0π sample

Anti-neutrino mode 
CC-1 track sample
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T2K neutrino 
energy range

Neutrino cross-sections

Charged current quasi-elastic interactions are primary 
signal

━ But, other interactions mimic CCQE
● Detector effects, final state interactions

━ Need to understand multiple interaction modes 
over range of neutrino energies

Charged current 
quasi-elastic

(CCQE)

Cannot directly measure neutrino flux – known to ~8% level at T2K

Neutrino interaction cross-
sections have ~10% uncertainty:

━ Nuclear environment has 
large effect on interaction

● Cannot calculate from first 
principles

━ Existing data has large 
uncertainties  
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T2K near detector analysis
INGRID + 

Beam monitor 
data

NA61 data

External cross 
section data Flux model

Cross 
section 
model

ND280 
detector 
model

ND280 
data

ND280 fit

Detectors measure interaction rate:
━ Flux * Cross-section
━ Joint fit of models to ND280 data allows constraint on rate

● Anti-correlate flux and cross-section uncertainty
━ Propagate tuned models to far detector
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ND280 fit

Postfit near 
detector MC 
agrees much 
better with 
data

Flux parameters

● Model parameters shifted from 
prior values

● Parameter uncertainties reduced
● Absolute errors smaller
● Anti-correlated

● Test model dependence using fit
● More on this later!

Neutrino mode 
CC-0π sample

Prefit

Neutrino mode 
CC-0π sample

Postfit
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T2K oscillation analysis
INGRID + 

Beam monitor 
data

NA61 data

External cross 
section data Flux model

Cross 
section 
model

ND280 
detector 
model

ND280 
data

ND280 fit
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Far detector measurement

● Assume nucleon at rest – 2-body 
process

● Can calculate neutrino energy 
from observed muon kinematics

CCQE

Signal in far detector:
● Measure rate of muon-

like and electron-like 
events

● CCQE interactions are 
'golden' channel
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SK ν event selection
Look for fully contained, single ring events inside SK fiducial volume, then:

● Reconstructed momentum 
> 200 MeV/c

● At most 1 decay electron

● Reconstructed momentum > 100 MeV/c
● Reconstructed energy < 1250 MeV
● No decay electrons
● Not identified as π0

If muon-like ring: If electron-like ring:

66 events
4 events

PreliminaryPreliminary
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T2K oscillation analysis
INGRID + 

Beam monitor 
data

NA61 data

External cross 
section data Flux model

Cross 
section 
model

ND280 
detector 
model

ND280 
data

ND280 fit

SK data Oscillation fit

SK 
detector 
model

Oscillation 
parameters
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Joint oscillation analysis
What?

● Fit both electron-like sample and muon-like sample
● Fit both neutrino beam mode and anti-neutrino beam mode data

How?

● Maximise a likelihood:   =  �  �
Data

 *   �
Flux

 *   �
XSec

 *   �
SK detector

● Prior constraints on flux and cross-section parameters from near 
detector fit
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● Data shown with
● Unoscillated 

prediction 
(blue)

● Best-fit 
spectrum (red)

● Three 
independent 
analyses

● Bayesian and 
frequentist

● All give 
consistent 
results

SK data samples
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sin2θ
23

 – Δm2

23
 sector Hiro Tanaka
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Hiro Tanaka
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Future long-baseline neutrino 
oscillation measurements
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Discovering leptonic
CP violation

● T2K Phase 2 sensitive to maximal CP violation at 3σ, Hyper-K 
sensitive at 5σ over range of values of δ

CP

● Future long-baseline neutrino oscillation experiments will be 
systematics limited!

Hyper-K

Hyper-K experiment proposal to 
J-PARC PAC http://j-

parc.jp/researcher/Hadron/en/pac_1
405/pdf/P58_2014_2.pdf

Assume 3% 
uncertaintyT2K

Phase 2

T2K
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Systematics at T2K
● Uncertainty on δ

CP
 measurement dominated by:

● Neutrino interaction uncertainties – 3.9%
● Final state (FSI) and secondary interaction (SI) uncertainties – 

3.7%

Charged current 
quasi-elastic

Charged current 
single pion

Charged current 
deep inelastic 

scattering

● No clear picture from dedicated cross-section experiments
● Limiting systematic errors from theory

● Multi-nucleon events...
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Multi-nucleon events

● SK uses lepton kinematics to infer 
neutrino energy

● Assumes neutrino scattered from 
single nucleon at rest

● Multi-nucleon events indistinguishable 
from single nucleon events at SK

● Assumption no longer valid

● Energy reconstruction is biased

● (Also true for calorimetric methods)

Single nucleon 
event

Multi-nucleon event 
(MEC, 2p-2h, np-nh...)
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Multi-nucleon events

● Many different theoretical models

● Martini vs Nieves shown on right

● ~15% of CCQE-like cross-section

● Can differ greatly in predicted 
event rates

● Predict different rates for 
neutrinos vs anti-neutrinos

● Hard to separate models 
experimentally

Single nucleon 
event

Multi-nucleon event 
(MEC, 2p-2h, np-nh...)
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Cross-section experiments

● MINERvA results for muon CCQE-like cross-sections

● Neutrino energies from ~1.5 GeV up to 10 GeV

● Ratio to GENIE prediction versus cross-section models

● Muon kinematics weakly prefers TEM model, proton weakly prefers nominal 
GENIE – no model is consistent with the MiniBooNE and MINERvA data

Walton et al. Phys. Rev. D 91, 071301 (2015)
CCQE cross-section using proton kinematics

Fiorentini et al. Phys. Rev. Lett. 111, 022502 (2013)
CCQE cross-section using muon kinematics
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How does this affect
oscillation analyses?

● At maximum oscillation, neutrino flux goes to zero
● Biased energy reconstruction smears multi-nucleon events into 

oscillation dip
● At near detector, effect of multi-nucleon events 'hidden' under 

neutrino flux – hard to constrain
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T2K multi-nucleon study
● MC-based analysis using full detector simulation, full systematics etc.
● Three fake datasets

– Nominal NEUT MC

– NEUT + meson exchange current (MEC) events from Nieves' model - 
Phys. Rev. C, 83:045501, Apr 2011 

– NEUT + MEC events based on Martini's model -                                         
 Phys. Rev. C, 81:045502, Apr 2010

● Perform disappearance fit to extract θ23 in each case and compare

● Models give ~3.5% RMS in sin2 θ23, Martini model introduces ~3% bias

● More recent studies with other nuclear models show similar effects
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T2K fake data studies
● Investigate effect of interaction model choice on latest T2K oscillation 

results
● MC-based using analysis framework described earlier

– Create fake data with alternate model 

– Fit near and far detector fake data with nominal model

– Look at change in best fit oscillation parameters and SK event rates

● Fractional change in CC-0π and CC-1π samples at ND280 between 
Relativistic Fermi Gas (RFG) and Spectral Function (SF) nuclear models

CC-0π CC-1π 
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RFG vs SF
● Look at change in best fit model parameters and predicted SK spectrum

● Significant change in flux 
parameters (top left)

● ND280 over-predicts SK electron 
neutrino event rate (top right)

● Shift in best fit of sin2θ13 on right – 
0.17σ shift in parameter for current 
uncertainties
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Systematics at T2K

● T2K oscillation parameter sensitivity with and without systematics above
● Current analysis dominated by statistical uncertainties - not yet sensitive to effect of 

nuclear models
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Effect of model choices
● Take fractional change in SK event rate prediction between fake data fits 

and Asimov samples
● Directly comparable to previous table

● Electron neutrino / anti-neutrino rate highlighted
– Direct measure of uncertainty in CP violation measurement

● Model choice gives shift equal to current systematic 
uncertainties

T2K Preliminary
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NuNuPPRRIISSMM

NuNuPPRRIISSMM:
An experimental solution to the 

problems of neutrino interactions in 
long baseline neutrino experiments 
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NuNuPPRRIISSMM NuPRISM
● Water Cherenkov detector spanning 1° – 4° from the 

neutrino beam axis

– 52.5m tall if 1km from neutrino production target
● Instrument movable cylinder:

– Inner Detector (ID): 8m diameter, 10m tall

– Outer Detector (OD): 10m diameter, 14m tall
● Same nuclear target and acceptance as far detector
● Smaller near-to-far flux extrapolation uncertainty

OD: 20” PMT
ID: 8” PMT

 Multi-PMT 
for both

Or
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NuNuPPRRIISSMM

ν beam

NuPRISM concept
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NuNuPPRRIISSMM

ν beam

1°

2.5°

4°

NuPRISM concept
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NuNuPPRRIISSMM

ν beam
νPRISMMuon p-θ

NuPRISM concept
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NuNuPPRRIISSMM

ν beam
νPRISMMuon p-θ

+1.0

-0.5

-0.2

Mono-energetic beams

Take linear 
combinations



30/09/16 Mark Scott, TRIUMF 46

NuNuPPRRIISSMM Mono-energetic beams
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NuNuPPRRIISSMM

ν beam
νPRISMMuon p-θ

Take linear 
combinations

+1.0

-0.5

-0.2

Muon p-θ for a 
700 MeV 

monochromatic 
neutrino beam

● Using 60 slices of 
NuPRISM

● Gaussian neutrino 
flux

● Centred at 700 MeV, 
10% width

Mono-energetic beams
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NuNuPPRRIISSMM Mono-energetic beams
in practice

● Gaussian neutrino beams with neutrino energy from 400 MeV→1200 MeV

● Determined by off-axis angular span of detector

● Full T2K flux error shown

● High energy tail almost completely cancelled
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NuNuPPRRIISSMM

● Provides more information on neutrino interactions
● Clear separation between quasi-elastic (QE) and non-QE events
● Measure in data:

● As function of true neutrino energy
● In same detector → highly correlated flux and detector systematics

How can we use them?

Selected events at ND280
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NuNuPPRRIISSMM

● Provides more information on neutrino interactions
● Clear separation between quasi-elastic (QE) and non-QE events
● Measure in data:

● As function of true neutrino energy
● In same detector → highly correlated flux and detector systematics

● Can also calculate true Q2 and ω

How can we use them?
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NuNuPPRRIISSMM νPRISM detector concept

ν beam
νPRISMMuon p-θ

Or take different 
combinations

-0.8

+1.0

+0.2
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NuNuPPRRIISSMM νPRISM detector concept
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NuNuPPRRIISSMM νPRISM detector concept

ν beam
νPRISMMuon p-θ

Or take different 
combinations

-0.8

+1.0

+0.2

● Recreate oscillated neutrino flux at SK 
using near detector

● Directly measure muon p-θ for given 
value of oscillation parameters
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NuNuPPRRIISSMM ν Oscillation with NuPRISM

● Event rate = Flux(Eν ) * Cross-section(Eν ) * Efficiency

● NuPRISM and SK have water target – same interaction cross-section
● If fluxes (and efficiency) match:

● NuPRISM linear combination event rate == oscillated SK event 
rate

● No cross-section model, no effect from wrong model choice
● Directly compare to SK data to get oscillation parameters

sin2θ
23

 = 0.5

Δm2

32
 = 2.41x10-3
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NuNuPPRRIISSMM ν Oscillation with NuPRISM
● Red – directly measured 

in NuPRISM data
● Blue – flux fit difference 

correction
● Magenta – Acceptance 

correction

– NuPRISM only 8m 
wide

– Can contain muons 
up to ~1.2GeV

● Green – SK background 
correction

– Cancelation with bkg 
subtracted at 
NuPRISM

● Majority of SK 
prediction directly 
measured

sin2θ
23

 = 0.5

Δm2

32
 = 2.41x10-3

sin2θ
23

 = 0.60

Δm2
32

 = 2.65x10-3

sin2θ
23

 = 0.40

Δm2
32

 = 2.15x10-3
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NuNuPPRRIISSMM Multi-nucleon events
● Add multi-nucleon events to SK and NuPRISM MC to create fake dataset

● Neutrino interaction model does not include these events
● Redo linear combinations using fake data

● NuPRISM correctly predicts SK event rate!
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NuNuPPRRIISSMM Effect of multi-nucleon
events at νPRISMStandard T2K 

analysis
● Add np-nh events (Nieves and Martini 

models) to T2K fake data
● Perform disappearance fit to extract θ23

● Compare to result from fit to nominal 
fake data
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NuNuPPRRIISSMM

● Add np-nh events (Nieves and Martini 
models) to T2K fake data

● Perform disappearance fit to extract θ23

● Compare to result from fit to nominal 
fake data

Standard T2K 
analysis

● Bias and RMS greatly 
reduced

● νPRISM analysis largely 
independent of cross 
section model

νPRISM 
analysis

Martini Model
Bias < 0.1%
RMS = 1.2%

Nieves Model
Bias < 0.1%
RMS = 1.1% 

Effect of multi-nucleon
events at νPRISM
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NuNuPPRRIISSMM T2K 2016 systematics

● CP measurement depends on uncertainty on νe/anti-νe ratio

● Dominant uncertainties from theory
– Final state interactions (FSI), secondary interactions (SI) – nuclear 

model extrapolation from pion-nucleus scattering experiments

– Electron/Muon cross-section ratios – ND280 does not have 
statistical power to constrain to 3% in region of interest

● ND280 constraint affected by nuclear model uncertainties
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NuNuPPRRIISSMM ν
e
 cross-section

● Current uncertainty based on theory
– ~3.5% uncertainty on CP violation measurement

● Hyper-K sensitivity to observe CP violation for various uncertainties on 
νe cross-section

● Significantly degrade sensitivity
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NuNuPPRRIISSMM ν
e
 cross-section

● Current uncertainty based on theory
– ~3.5% uncertainty on CP violation measurement

● We should measure this!

● Expect ~5000 events < 2 GeV per 1e21 POT at 73% purity
– Compared to ~500 at ND280 in this energy region

● Conservative error estimate of <5%, dominated by flux ratio uncertainty
– Replica target data will reduce flux ratio uncertainty
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NuNuPPRRIISSMM ν
e
 oscillation at NuPRISM

● 3 stage approach

– Match SK νe appearance flux using NuPRISM νμ flux

– Match NuPRISM instrinsic νe flux using NuPRISM νμ flux - measure cross-
section ratio with same flux

– Measure beam and NC backgrounds using 2.5° NuPRISM flux

Stage 1 Stage 2
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NuNuPPRRIISSMM Benefits for ν
e
 at NuPRISM

● Water Cherenkov detector, same as SK, so can make high purity 
electron-neutrino sample

● Going off-axis increases relative fraction of intrinsic electron neutrinos in 
beam

● Large statistics
● Matching fluxes

– For appearance signal

● Nuclear effects
● FSI, SI

– All cancel!
– For cross-section

● Same interaction modes
● Same energy 
dependence

● Dominant, theory driven systematics 
cancelled out experimentally
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NuNuPPRRIISSMM NuPRISM Status
● Updated proposal reviewed at the J-PARC PAC in January 2016:

– http://j-parc.jp/researcher/Hadron/en/pac_1601/pdf/P61_2016-5.pdf

● Summary of the PAC response:
– “NuPRISM is an excellent proposal... [but] is intimately related to the T2K 

extension”
– “The PAC strongly encourages the continuation of R&D studies in close 

collaboration with the proponents of the T2K-Phase II proposal”

● ICRR-KEK/IPNS review
– “the accelerator, beam line, near detector, and intermediate detector upgrades for 

HK should be realized as soon as possible, and will benefit T2K”
● KEK Project Implementation Plan review concluded that the upgrades for Hyper-

Kamiokande have the highest priority

● Working with T2K to put forward joint statement on NuPRISM for T2K-II
● Working with TITUS (an alternative proposal) towards merger of detectors

● Submitted joint CFI Innovation fund request with Canadian IceCube group
– CAPSTONE (Canadian Advanced PhotoSensor TechnOlogy for Neutrino 

Experiments), developing a multi-PMT photosensor for NuPRISM and PINGU

http://j-parc.jp/researcher/Hadron/en/pac_1601/pdf/P61_2016-5.pdf
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NuNuPPRRIISSMM NuPRISM Phase 0
● Funding for detector pit available 

~2020
– Want to start before then...

● Fully instrumented detector on 
surface at ND280 site

● 9 to 12 degrees off-axis
– Low enough rate for water 

Cherenkov
– Larger fraction of electron 

neutrinos in beam
– Electron neutrino energy 

~700 MeV
● Test calibration procedure to 

reach necessary detector 
systematic precision

● High statistics measurement of 
νe / νμ cross section

Blue – ν
μ
 flux

Red – ν
e
 flux

Black - Ratio
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NuNuPPRRIISSMM Summary
Oscillation experiments will be limited by systematics not 
statistics

– Dominant systematics hard to constrain with traditional near 
detectors

The NuPRISM detector provides a solution
– Same nuclear target and acceptance as SK

– Same signal + background
● If near and far fluxes match systematics cancel
● Oscillation analyses independent of interaction model

NuPRISM also enables:
– Unique probe of cross-sections

– Powerful sterile neutrino searches

– Tests of new water Cherenkov technologies

NuPRISM project gaining momentum – NuPRISM Phase 0

New collaborators welcome!
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NuNuPPRRIISSMM

Backup Slides
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NuNuPPRRIISSMM Discussion of T2K results
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NuNuPPRRIISSMM Effect of oscillation
on near detector extrapolation

● Near detector event spectrum on left, oscillated far detector spectrum 
on right

● Near detector tunes to 500 – 700 MeV events, far detector sees higher 
energy events
– Can lead to biased tuning
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NuNuPPRRIISSMM Biases in
calorimetric experiments

● Ankowski et al. Phys. Rev. D 92, 073014 (2015)
● Shaded = perfect knowledge of detector
● Coloured lines – amount of 'missing' energy

– e.g. Incorrectly modelled neutron production rates

295 km baseline 1000 km baseline
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NuNuPPRRIISSMM
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NuNuPPRRIISSMM
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NuNuPPRRIISSMM Conceptual Design

● Winches on each tower raise and lower detector on rails
● Will need full design by engineers
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NuNuPPRRIISSMM Short baseline oscillations
● NuPRISM – same L/E range as LSND and MiniBooNE sterile results

● Neutrino flux variation across NuPRISM provides unique capabilities

– Directly probe 
oscillation curve

– Constrain 
backgrounds

● Energy 
dependence

● Direct 
measurements

J. Formaggio 
and G. Zeller, 
arXiv:1305.7513

http://arxiv.org/abs/1305.7513
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NuNuPPRRIISSMM Signal and background
● Search for νe appearance using νμ events to 

constrain flux

● Full T2K flux and cross section uncertainties 
included

● On-axis (top)

● High νμ contamination

● Broad signal distribution

● Off-axis (bottom)

● Very little νμ contamination

● Signal peaked at low reconstructed 
energy

Points = Appearance signal
Red = Intrinsic ν

e
 bkgd

Blue = ν
μ
 bkgd
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NuNuPPRRIISSMM Sterile sensitivity

● Excludes (almost) entire 
LSND allowed region at 5σ
– Comparable to Fermilab 

SBN

● Statistics limited!
– Expect results to improve:

● Full reconstruction 
and selection

● Direct constraint of 
backgrounds

● Include T2K near 
detector

● NuPRISM neutrino fluxes peak at different energies for a given baseline
● Sterile oscillation has different energy dependency than background 

cross-sections → can separate them



30/09/16 Mark Scott, TRIUMF 77

NuNuPPRRIISSMM Gadolinium doping

● SK planning to load Gd in future – increase sensitivity to supernovae
● Statistically separate neutrino interactions from anti-neutrino
● Tag proton decay backgrounds

● But, neutron emission from neutrino interactions largely unknown
● NuPRISM can measure this:

● Mono-energetic neutrino source
● Neutron capture rates as a function of lepton kinematics

● Neutrons capture on Gd
— 49,000b capture cross section

— 8 MeV gamma cascade, 4-5 MeV 
visible

— 0.1% doping → 90% neutrons 
capture on Gd
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NuNuPPRRIISSMM Event Selection
● Same event selection as at SK:

– Single ring

– Muon-like

– Fully contained in fiducial volume

● Record the off-axis angle of the interaction, using the reconstructed 
vertex position

1° off-axis

4° off-axis
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NuNuPPRRIISSMM Building the oscillated flux
● All based on simulated neutrino flux at SK and νPRISM

● Slice νPRISM into 60 slices of 0.05 degree – assign each a weight

● MINUIT χ2 fit between sum of weighted νPRISM slices and oscillated 
SK flux

C
1

+ C
6

+ C
16

+ C
30

Fit
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NuNuPPRRIISSMM Building the oscillated flux
● Perform fit for all combinations of oscillation parameters used in the 

oscillation fit

sin2θ
23

 = 0.60

Δm2
23

 = 2.65x10-3

● Get a set of 60 Ci 
coefficients for each 
pair of oscillation 
parameters

sin2θ
23

 = 0.40

Δm2
23

 = 2.15x10-3
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NuNuPPRRIISSMM SK prediction
● Apply these weights to the selected events in each off-axis slice of 

νPRISM

● Now looking at reconstructed neutrino energy - events smeared into 
oscillation dip by nuclear effects and energy resolution

● To νPRISM data:

– Flux correction

– Acceptance 
correction

– Addition of 
selected SK 
background

● Introduce some model 
dependence
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NuNuPPRRIISSMM Systematic uncertainties
● Every correction made to the νPRISM prediction is calculated from 

our nominal MC – all are constant corrections

● To calculate systematic uncertainties:

– Apply a variation to the νPRISM and SK MC

– Changes number of selected events at both detectors

– Apply corrections (from the unvaried, nominal MC)

– Calculate change in the νPRISM prediction

– Use this to calculate fractional covariance matrix for νPRISM 
prediction

● This analysis takes flux and cross section uncertainties into account

– Conservative detector systematics coming soon!
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NuNuPPRRIISSMM νPRISM disappearance
analysis

● Full analysis using νPRISM as near detector 
for T2K

● Take into account:
– Statistical error from linear combinations

– Neutrino beam uncertainties – direction, 
flux etc.

– Interaction model uncertainties

Total uncertainty 
on #events at SK

Uncertainty 
correlation matrix

Predict SK events 
using νPRISM data
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NuNuPPRRIISSMM Systematic throws
● Look at fake data throws of both flux and cross section uncertainties

● νPRISM - very few events at low or high energy, little variation

● In oscillation region variations similar at SK and νPRISM

● Spectra are ~Gaussian distributed about the central value

● Plots show all 300 throws of the νPRISM prediction (left) and 
selected SK events (right)
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NuNuPPRRIISSMM Systematic throws
● Plot difference between selected SK events and νPRISM prediction 

for each throw

● Most of spectrum shows less than 0.5 event difference between SK 
and νPRISM prediction

● Systematic uncertainties are cancelling between the two detectors
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NuNuPPRRIISSMM Oscillation fit
● Calculate covariance matrix and νPRISM prediction for various 

points in θ23 and Δm2 phase space

● Use Simple Fitter 
to calculate 
likelihood (L)

● Plot - ln(L) for all 
points in θ23 and 
Δm2

● Minimum bin 
gives best fit 
oscillation 
parameters 
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NuNuPPRRIISSMM
Martini MEC result

● Look at effect of adding MEC events to 300 fake data sets

● Much smaller RMS in θ23 (left) and Δm2 (right) than in T2K 
analysis

● No bias seen in θ23 plot

● νPRISM will provide the first data driven constraint on the 
effect of multi-nucleon events in oscillation measurements
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NuNuPPRRIISSMM
Nieves' result

● Look at the difference in best fit oscillation parameters 
between the nominal MC and the MC with additional 
Nieves MEC events

● Much smaller RMS in θ23 (left) and Δm2 (right) than in T2K 
analysis 

● Large spike at 0 difference in both plots
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NuNuPPRRIISSMM A neutrino spectrometer

500 MeV 700 MeV 1 GeV

● Gaussian spectra from ~0.4 GeV to ~1 GeV

– Depends on off-axis span of νPRISM: 6° - 0.25 GeV, 0° - 1.2 GeV

● High energy tail cancelled in all cases
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NuNuPPRRIISSMM NuPRISM Phase 0
● Some considerations:

● Is there space?
– Will use EGADs tank + water system 

to estimate footprint
– Maybe requires a new (cheap) 

building
● Sky-shine neutrons

– Seen at K2K 1T detector
– Need to measure for T2K beam

● Low energy neutrinos from  beam dump 
or MLF – search for sterile oscillations

● Long-term tests of HK PMTS
● Can put magnetized muon range 

detector behind tank
– Calibrate Gd tagging
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NuNuPPRRIISSMM
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NuNuPPRRIISSMM
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NuNuPPRRIISSMM
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