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1: Context
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The 2012 Revolution 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« 	Two	major	discoveries	in	par1cle	physics		
§  	A	SM-like	Higgs	boson	(ATLAS,	CMS)	

•  The	key	to	EWSB	and	a	possible	window	to	the	BSM	world	

§   θ13	~	10o	(T2K,	MINOS,	Daya	Bay,	RENO)	
										-	about	as	large	as	it	could	have	been	!	

•  The	door	to	CP	ViolaRon	in	the	leptonic	sector	
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« 	Now	textbook	physics*	
§  	plan	the	next	steps	

*apologies	for	gratuitous	plug	
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2. Why are Neutrinos so Important? 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a connection to BSM physics  
« 	Neutrino	masses	are	anomalously	small	

§  	Why	is	this	the	case	…or	what	is	the	origin	of	neutrino	mass	
Dirac	mass	terms,	Higgs	coupling	together		
		L-	and	R-handed	chiral	fermionic	fields	
	
	
	

Yfp
2
v
⇣
fLfR + fRfL

⌘

§  This	could	be	the	origin	of	neutrino	masses	
Existence	of		RH	neutrino	–	a	rather	minimal	extension	to	the	SM?		

§  But	a	RH	neutrino	is	a	gauge	singlet			
Can	now	add	“by	hand”	a	new	Majorana	mass	term	to	the				
		SM	Lagrangian,	involving	only	the	RH	field	(and	conjugate)	

⇠ M⌫c
R⌫R

This	addiRonal	freedom	might	explain	why	neutrino	masses	are	“different”	
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a connection to BSM physics  
« 	Is	there	a	connecRon	to	the	GUT	scale?		

§  If	both	Dirac	and	Majorana	mass	terms	are	present		

§  The	seesaw	mechanism:	the	physical	“mass	eigenstates”	
						are	those	in	the	basis	where	the	mass	matrix	is	diagonal			

(nothing	to	prevent	this)	

L ⇠ � 1
2

⇣
⌫L ⌫

c
R

⌘  0 mD
mD M

!  
⌫c

L
⌫R

!

Light	LH	neutrino																												+		heavy	RH	neutrino																	m⌫ ⇡
m2

D

M
mN ⇡ M

§  With																						and																																														get	to	right		
							range	of	small	neutrino	masses!						

mD ⇠ m` M ⇠ 1012 � 1016 GeV

+	implies	Lepton	#	violaRon	
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3: Neutrinos – known unknowns
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The Standard Neutrino Paradigm  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« 	Neutrino	flavor	oscilla1ons	now	a	well	established	
						physical	phenomenon:		

		
§  	Neutrinos	have	non-zero	mass	
§  	Neutrino	mass	eigenstates	(ν1,	ν2,	ν3	)	≠	weak	eigenstates	(νe,	νµ,	ντ	)		

P(⌫µ ! ⌫e) = sin2(2✓) sin2
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The PMNS Matrix  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«  	The	non-alignment	of	the	mass	and	weak	eigenstates	described	by	the				
							Unitary	PMNS	matrix	

« Effec1vely	describes	the	couplings	between	the	charged	and	neutral	leptons	

	
§  ν	propagates	as	a	coherent	state		
§  oscillaRons	arise	from	phase		
						differences	between	the	different	
						mass	eigenstates	
§  i.e.	when	neutrinos	have	different		
							masses	

e.g.																													“oscillaRons”	

m⌫ , 0



The Standard 3-Flavor Paradigm  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« 	Unitary	PNMS	matrix								mixing	described	by:	
§  	three	“Euler	angles”:	
§  	and	one	complex	phase:			
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« 	If																								then	SM	leptonic	sector								CP	violaRon		(CPV)	
§  	CPV	effects		
§  	now	know	that								is	rela1vely	large					

/ sin ✓13

� , {0, ⇡}

✓13
CPV	is	observable	with	conven1onal	ν	beams	

LBNF/DUNE	
Hyper-Kamiokande	

si j = sin ✓i j ; ci j = cos ✓i j



The Known Unknowns 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« 	We	now	know	a	great	deal	about	the	neutrino	sector	
« 	But	s1ll	many	profound	ques1ons			

§  	Why	are	neutrino	masses	so	small	?	
•  Is	there	a	connecRon	to	the	GUT	scale?	

§   Are	there	light	sterile	neutrino	states	?	
•  No	clear	theoreRcal	guidance	on	mass	scale…	

§   What	is	the	neutrino	mass	hierarchy	?	
•  An	important	quesRon	in	flavor	physics,	e.g.	CKM	vs.	PNMS	

§   Is	CP	violated	in	the	leptonic	sector	?	
•  Are	νs	key	to	understanding	the	maier-anRmaier	asymmetry?	

CKM	 PMNS	NH	 PMNS	IH	

or	vs.	



The Known Unknowns 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« 	Next	genera1on	Long-Baseline	experiments	(such	as	
					DUNE)	can	address	three	of	these	ques1ons:			

§  	Why	are	neutrino	masses	so	small	?	
•  Is	there	a	connecRon	to	the	GUT	scale?	

§   Are	there	light	sterile	neutrino	states	?	
•  No	clear	theoreRcal	guidance	on	mass	scale…	

§   What	is	the	neutrino	mass	hierarchy	?	
•  An	important	quesRon	in	flavor	physics,	e.g.	CKM	vs.	PNMS	

§   Is	CP	violated	in	the	leptonic	sector	?	
•  Are	νs	key	to	understanding	the	maier-anRmaier	asymmetry?	

Breaks	3-flavor	
paradigm	

CKM	 PMNS	NH	 PMNS	IH	

or	vs.	



The Key Question (my personal bias) 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Is	CP	violated	in	the	neutrino	sector	?			

« 	If																								the	answer	is	YES		� , {0, ⇡}

« 	Strong	moRvaRon	to	aim	for	a	definiRve		
					observaRon	for	CPV	in	the	ν	sector				

§  If	yes,	would	provide	strong	support*	for	the	hypothesis	
of	Leptogenesis	as	the	mechanism	for	generaRng	the	
maier-anRmaier	asymmetry	in	the	universe		

*not	proof,	since	sRll	need	to	connect	low-scale	ν	CPV	physics	to	the	high-scale	N	CPV			
		physics			

§  Ideally	want	“precise”	measurement	of	CP	phase		



4: How to Detect CPV with νs
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In principle, it is straightforward 

25.11.1518 Mark Thomson | DUNE
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« 	CPV								different	oscillaRon	rates	for					s	and				s				⌫ ⌫

« 	Requires	
§  	now	know	that	this	is	true,	
§  	but,	despite	hints,	don’t	yet	know	“much”	about							

{✓12, ✓13, ✓23} , {0, ⇡}
✓13 ⇡ 9�

�

« 	So	“just”	measure																																															?				
« 	Not	quite,	there	is	a	complicaRon…						

P(⌫µ ! ⌫e) � P(⌫µ ! ⌫e)

vacuum	osc.	



Matter Effects
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« 	Even	in	the	absence	of	CPV				

					Neutrinos	travel	through	material	that	is	not	CP	symmetric,	i.e.			
					maier	not	anRmaier	
« 	In	vacuum,	the	mass	eigenstates																									correspond	to		
						the	eigenstates	of	the	Hamiltonian:		

§  	they	propagate	independently	(with	appropriate	phases)	
« 	In	maier,	there	is	an	effecRve	potenRal	due	to	the	forward	
						weak	scaiering	processes:	

P(⌫µ ! ⌫e) � P(⌫µ ! ⌫e) = 0

V = ±
p

2GFne

Different	sign	for									vs					⌫e ⌫e

⌫1, ⌫2, ⌫3



Neutrino Oscillations in Matter  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« 	AccounRng	for	this	potenRal	term,	gives	a	Hamiltonian	that	is	
						no	longer	diagonal	in	the	basis	of	the	mass	eigenstates			

« 	Complicates	the	simple	picture	!!!!	
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Neutrino Oscillations in Matter  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What	we	measure	
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ProporRonal	to	L	
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Experimental Strategy  

25.11.1522 Mark Thomson | DUNE

EITHER:	
« 	Keep	L	small	(~200	km):	so	that	maier	effects	are	insignificant	

§  SRll	want	oscillaRons:			

§  Since																						need	a	high	flux	at	oscillaRon	maximum					

�m2
31L

4E
⇠ ⇡

2
� / E⌫

Off-axis	beam:	narrow	range	of	neutrino	energies	
OR:	
« 	Make	L	large	(>1000	km):	measure	the	maier	effects	(i.e.	MH)	

§  SRll	want	oscillaRons:			

§  Unfold	CPV	from	MaXer	Effects	through	E	dependence				

�m2
31L

4E
⇠ ⇡

2

On-axis	beam:	wide	range	of	neutrino	energies	

E⌫ > 2 GeV

E⌫ < 1 GeV
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5. DUNE – the Deep Underground    
                  Neutrino Experiment 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1300 km 
ν	

ν	ν	 ν	 ν	
ν	 ν	

ν	

LBNF/DUNE in a Nutshell 
« 	Intense	beam	of								or							fired	1300	km	at	a	large	detector	⌫µ ⌫µ
« 	Compare																						and																							oscillaRons	:	CPV	?	⌫µ ! ⌫e⌫µ ! ⌫e
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DUNE/LBNF in a Larger Nutshell 
« DUNE/LBNF	

§  Muon	neutrinos/anR-anRneutrinos	from	high-power	proton	
beam		
•  1.2	MW	from	day	one	
•  upgradable	to	2.3	MW	
	

§  Large	underground	LAr	detector	at	Sanford	Underground	
Research	Facility	(SURF)	in	South	Dakota	
•  4	Cavern(s)	for	 ≥ 40	kt	total	fiducial	far	detector	mass	
•  10	-	20	kt	fiducial	LAr	Far	Detector	(from	day	one)	
•  40	kt	as	early	as	possible	
	

§  Highly-capable	Near	Detector	system	
•  Using	one	or	more	technologies		



Origins of DUNE
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Paraphrasing 2014 P5 strategic review of US HEP
•  Called for the formation of LBNF:
–  as a international collaboration bringing together the LBL community
–  ambitious scientific goals with discovery potential for:

•  Leptonic CP violation 
•  Proton decay
•  Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with    
strong representation from:
–  LBNE (mostly US)
–  LBNO (mostly Europe)
–  Other interested institutes



DUNE is up-and-running 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It is a rapidly evolving scientific collaboration…
•  First formal collaboration meeting April 16th-18th 2015 
–  Over 200 people attended in person

•  Conceptual Design Report in June
•  Passed DOE CD-1 Review in July
•  Second collaboration meeting September 2nd-5th 2015
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It is a rapidly evolving scientific collaboration…
•  First formal collaboration meeting April 16th-18th 2015 
–  Over 200 people attended in person

•  Conceptual Design Report in June
•  Passed DOE CD-1 Review in July
•  Second collaboration meeting September 2nd-5th 2015

DUNE	is	on	the	real	axis	!	



DUNE 
  

25.11.1530 Mark Thomson | DUNE

has strong support from:
•  Fermilab and US DOE: 
–  This is the future flagship project for Fermilab

•  CERN
–  Very significant agreements on CERN – US collaboration

+  Strong international interest: Brazil, India, Italy, Switzerland, UK, … 



The DUNE Collaboration
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As of today:
799 Collaborators

from
145 Institutes

DUNE has broad international support



5.1: DUNE Science Strategy
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A	neutrino	interacRon	in	the	ArgoNEUT	detector	at	Fermilab	



DUNE Primary Science Program  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Focus on fundamental open questions in particle 
physics and astro-particle physics: 
•  1) Neutrino Oscillation Physics
–  CPV in the leptonic sector
–  Definitive determination of the Mass Hierarchy
–  Precision Oscillation Physics (θ23 octant, …) & testing the 3-flavor 

paradigm

•  2) Nucleon Decay
–  Targeting SUSY-favored modes, e.g.  

•  3) Supernova burst physics & astrophysics
–  Galactic core collapse supernova, sensitivity to νe

p! K+⌫
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DUNE Oscillation Strategy
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Measure neutrino spectra at 1300 km in a wide-band beam
•  Determine MH and θ23 octant, probe CPV, test 3-flavor paradigm       
a  and search for ν NSI in a single experiment

•  Near Detector at Fermilab: measurements of unoscillated beam
•  40 kt LAr Far Detector at SURF: measure oscillated ν spectra 

Magnet'
Coils'

Forward'
ECAL'

End'
RPCs'

Backward'ECAL'Barrel'
ECAL'

STT'Module'

Barrel''
RPCs'

End'
RPCs'

FD	

ND	

1300 km 



DUNE Oscillation Strategy
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Measure neutrino spectra at 1300 km in a wide-band beam
•  Determine MH and θ23 octant, probe CPV, test 3-flavor paradigm       
a  and search for ν NSI in a single experiment
–  Long baseline:

•  Matter effects are large ~ 40%
–  Wide-band beam:

•  Measure νe appearance and νµ disappearance over range of energies
•  MH & CPV effects are separable  
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Separating MH & CPV
DUNE: Determine MH and probe CPV in a single experiment

A = P(⌫µ ! ⌫e) � P(⌫µ ! ⌫e) = ACP +AMatter
ACP / L/E ; AMatter / L ⇥ E

Recall:	

with	
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Nucleon Decay & SuperNova νs
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Nucleon decay 
•  Image particles from nucleon decay
–  target sensitivity to kaons (from dE/dx)
   from SUSY-inspired GUT p-decay modes    
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SNB neutrinos  
•  Trigger on and measure energy 
     of neutrinos from galactic SNB
–  In argon, the largest sensitivity is to νe 
–  CC                                                interaction
 

E ~ O(200 MeV)

E ~ O(10 MeV)

⌫e +
40Ar! e� + 40K⇤



DUNE Detector Design Choices  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Far detector design requirements in a nutshell:
•  Pattern recognition 
•  Energy measurement

in	energy	range:	few	MeV	–	few	GeV	

LAr-TPCLBNE
LBNO

   LAr-TPC Far Detector technology gives:
•  Exquisite imaging capability in 3D 

–  ~ few mm scale
•  Excellent energy measurement capability: 

–  totally active calorimeter

Near detector design requirements in a nutshell: 
•  Constrain systematic uncertainties in LBL oscillation analysis
–  Near detector must be able to constrain ν cross sections & ν flux



DUNE CDR Design =  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Far detector: 40-kt LArTPC

Near detector: Multi-purpose high-resolution detector 

Magnet'
Coils'

Forward'
ECAL'

End'
RPCs'

Backward'ECAL'Barrel'
ECAL'

STT'Module'

Barrel''
RPCs'

End'
RPCs'



5.2: LBNF – a MW-scale facility
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LBNF and PIP-II 
 « 	In	beam-based	long-baseline	neutrino	physics:	

§  	beam	power	drives	the	sensi1vity	
« 	LBNF	will	be	the	world’s	most	intense	high-energy	ν	beam	

§  1.2	MW	from	day	one	
•  NuMI	(MINOS)	<400	kW	
•  NuMI	(NOVA)			ulRmately	~700	kW	

§  upgradable	to	2.4	MW	
	

« 	Requires	PIP-II	(proton-improvement	plan)	
§  	$0.5B	upgrade	of	FNAL	accelerator	

infrastructure	
§  Replace	exisRng	400	MeV	LINAC	
						with	800	MeV	SC	LINAC	
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The LBNF Neutrino Beam  
 

hadrons 

§    i)   Start with an intense (MW) proton beam from PIP-II 
§    ii)  Point towards South Dakota 
§    iIi)  Smash high-energy (~80 GeV) protons into a target 
§    iv) Focus positive pions/kaons  
§    v) Allow them to decay 
§    vi)  Absorb remaining charged particles in rock 
§    vii) left with a “collimated”       beam ⌫µ

⇡+ ! µ+⌫µ

i)	ii)	
iii)	v)	 iv)	

vii)	
vi)	



5.3: The DUNE Far Detector
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The Far Site
DUNE Far Detector site 

•  Sanford Underground Research Facility (SURF), South Dakota 
•  Four caverns on 4850 level (~ 1 mile underground) 

 



25.11.1547 Mark Thomson | DUNE

The Far Site
DUNE Far Detector site 

•  Sanford Underground Research Facility (SURF), South Dakota 
•  Four caverns on 4850 level (~ 1 mile underground) 

 

Plan	is	to	commence		
Excava1on	in	2017		



Staged Approach to 40 kt
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Cavern Layout at the Sanford Underground Research Facility based 
on four independent caverns 

•  Four identical caverns hosting four independent 10-kt 
FD modules
–  Allows for staged construction of FD
–  Gives flexibility for evolution of LArTPC technology design 

•  Assume four identical cryostats
•  But, assume that the four 10-kt modules will be similar but not 

identical

#1	

#2	

#3	

#4	



LAr TPC Technologies
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LArTPC technology has been demonstrated by ICARUS

DUNE is considering two options for readout of 
ionization signals:
•  Single-phase wire-plane readout   
–  Ionization signals (collection + induction) read out in liquid volume
–  As used in ICARUS, ArgoNEUT/LArIAT, MicroBooNE
–  Long-term operation/stability demonstrated by ICARUS T600

•  Dual-phase readout
–  Ionization signals amplified and detected in gaseous argon above 

the liquid surface
–  Being pioneered by the WA105 collaboration
–  If demonstrated, potential advantages over single-phase approach



Why Liquid Argon?

25.11.1550 Mark Thomson | DUNE

« 	<	1.5	GeV	:		QE	dominates	
« 	>	5	GeV				:		DIS	dominates	
« 	in	between	-	mixture	of	QE/RES/DIS		

«  	Need	v.	large	detector	+	ability	to	image	ν interacRons	throughout	volume	

«  	Detector	capability	matched	to	neutrino	energy…	

µ�

⌫µ

n
p

µ�

⌫µ

n �+ ⇡+

n

µ�

⌫µ

N X

Quasi-ElasRc	 Resonant	 DIS	

W W W

E⌫ ⇠ 5 GeVIncreasingly	complex	final	states	

E⌫ ⇠ 5 GeV«  																																							ability	to		
					image/measure	complex	final	states		



Benefits of an imaging detector
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e.g.	for	electron	neutrino	appearance																				separaRon	is	vital		
« 	True	for	both	photons	from																							or	single	photons	

e± $ �
⇡0 ! ��

Single	electron	 π0	→	γγ					

§   Calorimetry to tag electrons/     
      gammas using dE/dx before  
      EM shower evolves 

�! e+e�
e�



Liquid Argon TPCs
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« LAr	TPC	basics	
§  Charged	parRcles	ionize	LAr	
§  Electrons	driued	in	strong	E-field	
§  Detect	charge	on	planes	of	wires	
														
	
	
	

	
	
	

«  	Challenges	include	
§  Argon	purity	&	HV	breakdown	(cryogenics	+	HV)	
§  Readout	(in	Rme)	–	many	samples/wires	(DAQ)	
§  Image	reconstrucRon	–	many	hits	(ReconstrucRon)	
§  Scaling	up	to	>	kton	(Engineering)	

�100 kV

time /ms

w
ire

#

E

⌫

e�



Far Detector Basics  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A modular implementation of Single-Phase TPC
•  Record ionization using three wire planes        3D image  
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Far Detector Basics  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A modular implementation of Single-Phase TPC
•  Record ionization using three wire planes        3D image  
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First 10 kt detector  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Modular implementation of Single-Phase TPC
•  Each 10 kt FD module:
–  Active volume: 12m x 14m x 58m
–  150 Anode Plane Assemblies

•  6.3m high x 2.3m wide

–  200 Cathode Plane Assemblies
•  3m high x 2.3m wide

–  A:C:A:C:A arrangement
–  Cathodes at -180 kV for 3.5m drift 
–  APAs have wrapped wires – read out both sides
–  Each side has one collection wire plane & two induction planes 

•  “Full-scale prototype” with the DUNE Single-Phase      
….Prototype at the CERN Neutrino Platform
–  Engineering prototype of DUNE reference design

•   6 full-sized drift cells
–  Proposal presented to SPSC today
–  Aiming for operation in 2018 



LArTPC Development Path
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Fermilab SBN and CERN neutrino platform provide a 
strong LArTPC development and prototyping program  

DUNE Alternative Design

WA105: 1x1x3 m3

2016 2018

WA105

Dual-Phase

35-t prototype

ICARUS

MicroBooNE

DUNE Reference Design

2015

DUNE SP PT @ CERN 

SBND

LBL

SBL

Single-Phase

2018



ProtoDUNE at CERN  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Engineering prototype of DUNE single-phase TPC
•  DUNE PT @ CERN ~ 2018
–  Active volume: 6m x 7m x 7m
–  6 Anode Plane Assemblies

•  6.3m high x 2.3m wide

–  6 Cathode Plane Assemblies
•  3m high x 2.3m wide

–  A:C:A arrangement
–  Cathode at -180 kV for 3.5m drift 

Prototyping of FD drift cell + setting up module factories
•  Science: Charged-particle test-beam campaign



ProtoDUNE at CERN  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Engineering prototype of DUNE single-phase TPC
•  DUNE PT @ CERN ~ 2018
–  Active volume: 6m x 7m x 7m
–  6 Anode Plane Assemblies

•  6.3m high x 2.3m wide

–  6 Cathode Plane Assemblies
•  3m high x 2.3m wide

–  A:C:A arrangement
–  Cathode at -180 kV for 3.5m drift 

Prototyping of FD drift cell + setting up module factories
•  Science: Charged-particle test-beam campaign



5.4: The DUNE Near Detector

25.11.1559 Mark Thomson | DUNE
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DUNE ND (in brief) 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The NOMAD-inspired Fine-Grained Tracker (FGT) 
•  It consists of:
–  Central straw-tube tracking system
–  Lead-scintillator sampling ECAL
–  Large-bore warm dipole magnet
–  RPC-based muon tracking systems

•  It provides: 
–  Constraints on cross sections and the neutrino flux
–  A rich self-contained non-oscillation neutrino physics program
–  N

Will result in unprecedented samples of ν interactions
–   >100 million interactions over a wide range of energies:

•   strong constraints on systematics  
•   the ND samples will represent a huge scientific opportunity

Magnet'
Coils'

Forward'
ECAL'

End'
RPCs'

Backward'ECAL'Barrel'
ECAL'

STT'Module'

Barrel''
RPCs'

End'
RPCs'



6: DUNE Physics Sensitivities
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Sensitivities and Timescales  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DUNE physics:
•  Game-change program in Neutrino Physics 
–  Definitive 5σ determination of MH
–  Probe leptonic CPV   
–  Precisely test 3-flavor oscillation paradigm

•  Potential for major discoveries in astroparticle 
physics
–  Extend sensitivity to nucleon decay
–  Unique measurements of supernova neutrinos (if one 

should occur in lifetime of experiment)



MH Sensitivity
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«  Sensitivities depend on multiple factors: 
§  Other parameters, e.g. δ
§  Beam spectrum, … 
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MH Sensitivity
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«  Sensitivities depend on multiple factors: 
§  Other parameters, e.g. δ
§  Beam spectrum, … 
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CPV Sensitivity
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CPV Sensitivity
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Measurement of δ
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« CPV “coverage” is just one way of looking at sensitivity…   
« Can also express in terms of the uncertainty on δ

Start	to	~approach	current	level	of		
precision	on	quark-sector	CPV		
phase	(although	takes	Rme)	
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Timescales  

25.11.1568 Mark Thomson | DUNE

50	%	CPV	Sensi1vity	

•  Comments
–  Year zero = 2025
–  With additional (international) 

support, could go somewhat 
faster

«  To understand how sensitivity evolves with time, fold in 
§  Staging of four FD modules
§  Beam power and upgrades 

Based	on	guideline		
funding	profile	



Oscillation Physics Milestones
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Rapidly reach scientifically interesting sensitivities:
–  e.g. in best-case scenario for CPV (δCP = +π/2) :

•  Reach 3σ CPV sensitivity with 60 – 70 kt.MW.year 
–  e.g. in best-case scenario for MH :

•  Reach 5σ MH sensitivity with 20 – 30  kt.MW.year 

« Genuine potential for early physics discovery



A few words about SN neutrinos 
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Super Nova Neutrinos I 
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•  For a core-collapse Super Nova in the galaxy:
–  Expect a few thousand                                           interactions
–  Complementary to other experiments (e.g. water/scintillator) which 

are mostly sensitive to anti-neutrino component
   

⌫e +
40Ar! e� + 40K⇤



Super Nova Neutrinos II 
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•  Energy and timing of neutrino burst are sensitive to 
particle physics & astrophysics 

«  Highlights include: 
§  Possibility to “see” neutron star formation stage 
§  Even the potential to see black hole formation ! 



7. Political Context
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Political Context – many firsts
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«  LBNF/DUNE will be: 
§  The first international “mega-science” project hosted by the US 

o  “do for the Neutrinos, what the LHC did for the Higgs” 
§  The first U.S. project run as an international collaboration 

o  Organization follows the LHC model 
 

«  The U.S. is serious: 
§  LBNF/DUNE is the future flagship of Fermilab & the U.S. 

domestic program – there is no plan B 
§  Very strong support from FNAL & the DOE 
§  CD3a in December – approval of funding for excavation in FY17 
 

«  A game-changer for CERN and the U.S. 
§  Historic agreement between U.S. and CERN 
§  US contributes to LHC upgrade (high-field magnets) 
§  CERN contributes to Far site infrastructure 

o  Approved by council in September 2015 
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«  LBNF/DUNE will be: 
§  The first international “mega-science” project hosted by the US 
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«  The U.S. is serious: 
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§  CERN contributes to Far site infrastructure 
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8. Summary
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Summary  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« DUNE will 
§  Probe CPV with unprecedented position 
§  Definitively determine the MH to greater than 5 σ		
§  Test	the	three-flavour	hypothesis		
§  Significantly	advance	the	discovery	potenRal	for	proton	decay	
§  (With	luck)	provide	a	wealth	of	informaRon	on	Supernova	bursts	

neutrino	physics	and	astrophysics	
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« DUNE will 
§  Probe CPV with unprecedented position 
§  Definitively determine the MH to greater than 5 σ		
§  Test	the	three-flavour	hypothesis		
§  Significantly	advance	the	discovery	potenRal	for	proton	decay	
§  (With	luck)	provide	a	wealth	of	informaRon	on	Supernova	bursts	

neutrino	physics	and	astrophysics	
	

« This	is	an	exci1ng	1me	
§  DUNE	is	now	ballisRc		
§  The	Rmescales	are	not	that	long:	

•  DUNE/LBNF	aims	to	start	excavaRon	in	2017	
•  The	large-scale	DUNE	prototype	will	operate	at	CERN	in	2018	



Summary  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« DUNE will 
§  Probe CPV with unprecedented position 
§  Definitively determine the MH to greater than 5 σ		
§  Test	the	three-flavour	hypothesis		
§  Significantly	advance	the	discovery	potenRal	for	proton	decay	
§  (With	luck)	provide	a	wealth	of	informaRon	on	Supernova	bursts	

neutrino	physics	and	astrophysics	
	

« This	is	an	exci1ng	1me	
§  DUNE	is	now	ballisRc		
§  The	Rmescales	are	not	that	long:	

•  DUNE/LBNF	aims	to	start	excavaRon	in	2017	
•  The	large-scale	DUNE	prototype	will	operate	at	CERN	in	2018	
	

« An	interna1onal	community	is	forming	–	including	CERN	
§  A	major	scienRfic	opportunity	for	the	UK	



Thank you for your attention
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Backup Slides
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Science
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Parameter Resolutions 
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δCP & θ 23
•  As a function of exposure  
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PDK 
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p → K ν
•  DUNE for various staging assumptions 



Beam Optimization
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Beam Optimization
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Following LBNO approach, genetic algorithm used to optimize horn 
design – increase neutrino flux at lower energies  
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Reconstruction
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LAr-TPC Reconstruction
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Real progress in last year – driven by 35-t & 
MicroBooNE
•  Full DUNE simulation/reconstruction now in reach  
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Calculating Sensitivies
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Determining Physics Sensitivities  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For Conceptual Design Report 
•  Full detector simulation/reconstruction not available 
–  See later in talk for plans

•  For Far Detector response 
–  Use parameterized single-particle response based on achieved/

expected performance (with ICARUS and elsewhere)

•  Systematic constraints from Near Detector + …  
–  Based on current understanding of cross section/hadro-production 

uncertainties
+   Expected constraints from near detector

•  in part, evaluated using fast Monte Carlo

Oscillation physics with atmospheric neutrinos
•  Neutrino Physics in the near detector
–  Neutrino cross section measurements
–  Studies of nuclear effects, FSI etc.
–  Measurements of the structure of nucleons
–  Neutrino-based measurements of sin2θW

•  Search for signatures of Dark Matter



Evaluating DUNE Sensitivities I 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Many inputs calculation (implemented in GLoBeS):
•  Reference Beam Flux
–  80 GeV protons
–  204m x 4m He-filled decay
     pipe
–  1.07 MW
–  NuMI-style two horn system

•  Optimized Beam Flux 
–  Horn system optimized for lower energies

•  Expected Detector Performance
–  Based on previous experience
     (ICARUS, ArgoNEUT, …)

•  Cross sections
–  GENIE 2.8.4
–  CC & NC
–  all (anti)neutrino flavors

Exclusive	ν-nucleon	cross	secRons	



Evaluating DUNE Sensitivities II 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•  Assumed* Particle response/thresholds
–  Parameterized detector response for individual final-state particles  

Particle 
Type 

Threshold 
(KE) 

Energy/momentum  
Resolution 

Angular  
Resolution 

µ± 30 MeV Contained: from track length 
Exiting: 30 % 

1o 

 
π± 100 MeV MIP-like: from track length 

Contained π-like track: 5% 
Showering/Exiting: 30 % 

 
1o 

 
e±/γ 30 MeV 2% ⊕ 15 %/√(E/GeV) 1o 

p 50 MeV p < 400 MeV: 10 % 
p > 400 MeV: 5% ⊕ 30%/√(E/GeV) 

5o 

n 50 MeV 440%/√(E/GeV) 5o 

other 50 MeV 5% ⊕ 30%/√(E/GeV) 5o 

*current	assumpRons	to	be	addressed	by	FD	Task	Force		



Evaluating DUNE Sensitivities III 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CC νe

•  Efficiencies & Energy Reconstruction
–  Generate neutrino interactions using GENIE
–  Fast MC smears response at generated final-state particle level

–  “Reconstructed” neutrino energy
–  kNN-based MV technique used for νe “event selection”, 

parameterized as efficiencies
–  Used as inputs to GLoBES

    

νe appearance 



Evaluating DUNE Sensitivities IV 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•  Systematic Uncertainties
–  Anticipated uncertainties based on MINOS/T2K experience
–  Supported by preliminary fast simulation studies of ND  
    Source 

 
MINOS 
νe 

T2K 
νe 

DUNE 
νe 

Flux after N/F extrapolation 0.3 % 3.2 % 2 % 

Interaction Model 2.7 % 5.3 % ~ 2 % 

Energy Scale (νµ) 3.5 % Inc. above (2 %) 

Energy Scale (νe) 2.7 % 2 % 2 % 

Fiducial Volume 2.4 % 1 % 1 % 

Total 5.7 % 6.8 % 3.6 % 

•  DUNE goal for νe appearance < 4 %
–  For sensitivities used: 5 % ⨁ 2 %

–  where 5 % is correlated with νµ & 2 % is uncorrelated νe only   



5: Hyper-Kamiokande
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Far Detector
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Hyper-K is the proposed third generation large water 
Cherenkov detector in the Kamioka mine  

 Kamiokande	
(1983-1996)	

Super-Kamiokande	
(1996-)	

Hyper-Kamiokande	
(202?-)	

3	kton	 50	kton	 1	Mton	

§    Inner detector volume = 0.74 Mton 
§    Fiducial volume = 0.56 Mton 
§    Photomultiplier tubes:  99,000 20” inner detector & 25,000 8” outer detector 



JPARC Beam for Hyper-K
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« 	Upgraded	JPARC	beam	
« 	At	least	750	kW	expected	at	start	of	experiment	

§  Physics	studies	assume	7.5x107	MW.s	exposure		
•  i.e.	10	years	at	750	kW	
•  or					5	years	at	1.5	MW	

§  Beam	sharing	between	neutrinos:an1neutrinos	=	1	:	3	
« 	Hyper-K	is	off-axis	

§  Narrow-band	beam,	centered	on	first	oscillaRon	maximum	
§  Baseline	=	295	km									maXer	effects	are	small		

	



Hyper-K Science Goals  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Focus on fundamental open questions in particle 
physics and astro-particle physics: 
•  1) Neutrino Oscillations
–  CPV from J-PARC neutrino beam
–  Mass Hierarchy from Atmospheric Neutrinos
–  Solar neutrinos

•  2) Search for Proton Decay
–  Particularly strong for decays with   

•  3) Supernova burst physics & astrophysics
–  Galactic core collapse supernova 

⇡0



Hyper-K Science Goals  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Focus on fundamental open questions in particle 
physics and astro-particle physics: 
•  1) Neutrino Oscillations
–  CPV from J-PARC neutrino beam - matter effects are small
–  Mass Hierarchy from Atmospheric Neutrinos
–  Solar neutrinos

•  2) Search for Proton Decay
–  Particularly strong for decays with   

•  3) Supernova burst physics & astrophysics
–  Galactic core collapse supernova, sensitivity to ⌫e

⇡0

« 	Significant	complementarity	with	DUNE	physics	



Hyper-Kamiokande Physics*
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�CP = 0 �CP = 0

«  High-statistics for           appearance  

*here	focus	only	on	neutrino	oscillaRons	

Beam 
mode 

Signal Background Total 
NC 

3016 28 11 0 503 20 172 3750 
396 2110 4 5 222 265 265 3397 ⌫µ

⌫µ
⌫µ!⌫e⌫µ!⌫e ⌫µ ⌫e ⌫e⌫µ

⌫e/⌫e



CPV Sensitivity
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«  CPV sensitivity from event counts 
§  + some shape information



Hyper-K δCP Sensitivity
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«  CPV sensitivity based on: 
§  10 years @ 750 kW or 5 years at 1.5 MW 
§  Assume MH is already known  

«  CPV coverage: 
§  76 % at 3 σ
§  58 % at 5 σ  


