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1. The model choice problem

The model choice problem

> In HEP we usually have a dataset that we want to extract some physical parameter
from - parameter of interest (POI)
> The signal yield or branching fraction
> Decay time
> Mass, width, angular parameters etc.
» Usually have other parameters we don’t know but also don't care about - nuisance
parameters
> Size and shape of backgrounds
> Signal fractions etc.
» Often we don’t know the true distribution of some components
» Background contributions
> Acceptance effects
> This can give a large bias on the parameter of interest (POI)
Large unknown background Decay time acceptance
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1. The model choice problem

The size of the problem

> In some cases the size of this problem can be large

v

Consider the large background, small signal case

v

If the true distribution is an exponential but | fit instead a single order polynomial
» The bias is huge
> Measured using the pull over an ensemble of pseudoexperiments
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1. The model choice problem

What solutions are out there?

1. Pick your favourite model (or the one which fits best) and ignore all others

2. Look at difference in results from your favourite model with others and add as a
systematic

3. Use toys to assess any difference and add this as a systematic
4. Increase freedom of the model to minimise systematic bias but increase statistical
uncertainty and thus reduce sensitivity
What we want to know is:
» How do we choose which model to use?
» How do we quote the result?

» How do we assign a systematic uncertainty from any choice we've made?
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1. The model choice problem

> Present here a method for treating model choice uncertainties like a discrete
nuisance parameter

It summarises the work of JINST 10 P04015 ([arXiv:1408.6865])

Handling uncertainties in background shapes: the
discrete profiling method

P. D. Dauncey”; M. Kenzie”, N. Wardle” and G. J. Davies®
“Depariment of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UE.
PCERN, CH-1211 Geneva 23, Switzerland.
Email: P .Dauncey@inperial.ac.uk

ABSTRACT: A common problem in data analysis is that the functional form, as well as the parame-
ter values, of model which isnotk In these
e extra uncertainty must be assigned to the extracted parameters of interest due to lack
nal form of the model. A method for assigning an appr
based on considering the choice of functional form as &

nuisance parameter which is profiled in an analogous way o continuous nuisance paras
bias and coverage of this method are shown to be good when applied to a realistic example.

> This method came about because of the background modelling problem in the CMS
H— vy
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2. The envelope concept

Concept of a nuisance parameter

Consider a simple situation:
» Fit a Gaussian signal and exponential background model to data with

> one parameter of interest (observable) - e.g the mass of the signal, x
> one nuisance parameter - e.g. background exponential slope, 6
> all other parameters fixed (we imagine they are known perfectly)

1. Scan A = —2LL of parameter x whilst Lo
profiling 6 3 .F Full profile fit
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2. The envelope concept

Concept of a nuisance parameter

> Now imagine the background parameter is perfectly known also

» fix nuisance parameter which now has no variation
> equivalent to the statistical only error

2. Fix 6 to it’s best fit value
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H I r Il profile f
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2. The envelope concept

Concept of a nuisance parameter

» What about if we fix the background parameter to some other value?

> this gives some other curve
> not necessarily near the minimum

3. Fix 0 to a random value

B

Full profile fit
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2. The envelope concept

Concept of a nuisance parameter

> Can do this for a few different values of the background parameter

2. Fix 0 to a few random values
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2. The envelope concept

Concept of a nuisance parameter

» And even more values...

2. Fix 0 to a few random values

g : Full profile fit
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2. The envelope concept

Concept of a nuisance parameter

If you draw the minimum contour around all of the red dashed lines you begin to
recover the original curve
> In this case it doesn't matter because 6 is a continuous nuisance parameter
> But if we have a parameter that can ONLY take discrete values then we can make a
profile likelihood in this way
> For example we have ten different models (we can label them as having discrete value of a

nuisance parameter n = 1 — 10)
Fit freezing nuisance parameter to best fit

,,,,,,,,,, Fits freezing nuisance parameter to arbitary values

2. Draw minimum “envelope”
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2. The envelope concept

Concept of a nuisance parameter

> Clearly the more discrete values we sample the closer we get to the original

2. Draw minimum “envelope”
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2. The envelope concept

Concept of a nuisance parameter

> Clearly the more discrete values we sample the closer we get to the original

» IMPORTANTLY - you can mix discrete nuisance parameters with continous ones

2. Draw minimum “envelope”
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3. An example case

A more realistic example

» A small signal component

(Exponential) w0

» Uncertainty is increased if models are different

> Some realistic (and one unrealistic) background models P et
0] F — Laurent

» Do a profile scan for each model and take the envelope g 2007 % — Exponential
> Choices which are very similar have no effect & k — PowerLaw
(Laurent and Power Law) 150l  Pobmomal

» Choices which are bad have no effect [

(Polynomial) Lok

> Choices which compete increase the uncertainty [

» NOTE: No explicit model choice has to be made TR T 32‘3‘0 TRV
) “ " G
> We don't actually care what model “is the best e (GeV)
< <
— Laurent —— Minimum Envelope
218 218
. — Exponential
Result: e _ rower Law o I 65.3% inerval
» A best fit value v b — Polynomial s 95.4% Interval
. . 212 212
> A confidence interval v/
210 210
> A systematic from the model 208 208"
choice v 208 200F
20471 05 0 05 1 15 2 25 -1 -05 0 05 1 15 2 25
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3. An example case

Bias and Coverage properites

» Generate toy MC from various background hypotheses and then refit to asses the
bias (using the pull) and the coverage

» For example generate with exponential background distribution:

» Grey band shows 14% of statistical uncertainty

Fit back with exponential

‘Generated with exp1 at 1=0.00 and c=0.

5000 Entries.

Fit back with power law

‘Generated with exp1 at 1=0.00 and c=0. 5000 Entries.

Fit back with envelope

‘Generated with exp1 at 1=0.00 and c=0. 5000 Entries.
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3. An example case

Bias and Coverage properites

> Generate toy MC from various background hypotheses, as a function of the signal
size, and then refit to asses the bias

0.8 ® Laurent
A S DEman |3
02F v Envelope 5
Bias: E,D_g,*::::::::zzzg
S:g'é:'ﬂ‘-ﬂ-ﬂ-ﬂ--ﬂ-ﬂﬂ-ﬂ-’ﬂ‘-ﬂ-‘ﬂ"ﬂ‘g
» When you generate and fit back with o 0%E
the same (or similar) background IV
function the bias is neglible (green e -
. . . . 015t e R B T B e i 1| ©
points in top panel, red points in 02E- §
e g
second panel) oeE @
» When you generate and fit back with 08
different functions the bias is large (red 0E
. . . . O r@r -0~ ~rae 18~ re g r@ R @R e e | ©
points in top panel, green points in 02w R E AR SR STEEENG
=TI = TR=Tpte s NSV Y. S T L S
second panel) 06 3
. . c
» Using the profile envelope (black §§ = £
- . . AE- & & & e e e c
points) you find a small bias for all 02 o v e &
0o TSR R R | g
cases oiE A
0.6F S
08E- T
- -0.5 0 05 1 15 2
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3. An example case

Which PDF fits best?

» Can assess toys to see which PDF minimises the envelope

Generated with exponential ~Generated with power law Generated with Laurent

‘Generated with exp1 at 4=0.0 and c=0. 5000 Entries Generated ith pow! at =00 and c=0. 5000 Entries

Generated with lau1 at =0.0 and c=0. 5000 Entries

ents
w
&
3
3

y experimi
@
&
8
S

I
Number of toy experiments
Number of toy experiments

Number of to

lau

taut L
Best fit pdf Best fit pdf
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3. An example case

Bias and Coverage properites

> Generate toy MC from various background hypotheses, as a function of the signal
size, and then refit to asses the coverage

(]
g 68.3% Interval o e .
() O Exponential | &
Coverage: 3 gt L g
- . . © ﬂﬁﬁﬁﬁ*}ﬂﬂ*}ﬂﬁﬂ&
» When you generate and fit back with 2
the same (or similar) background 3
. . o =
function the coverage is good (green 3 . . £
. . . * 2
points in top panel, red points in ?g) AN g
L4 3
second panel) g * w
. . >
» When you generate and fit back with 8
different functions there can be
. . e B b | E
under-coverage (red points in top e
. . -
panel, green points in second panel) v e TS
. . c
» Using the profile envelope (black £
i g
points) you recover good coverage for . . |2
all cases oo o |2
o
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4. Different degrees of freedom

Hang on a minute...

» How do we compare models with different numbers of parameters?
> In the combinatorial background case a single exponential and an 8th order polynomial
are surely not on equal footing?

> The value of A = —2LL is simply a measure of how well the data agrees with a
particular probability distribution
> It does not account for degrees of freedom
» Consequently using A without any penalty would alway result in choosing the
highest order model(s) available [

» There is also no natural mechanism for ignoring higher and higher order functions fil

580 ™

» The answers is to correct the A for this 2;2? E
> It is not obvious by how much one s572F 3
should do this 570F E

> There are several possibilities: 568 E

1. Approximate p-value correction 566 E

2. Exact p-value correction 564 F E

3. Aikaike information criteria (AIC) 562 E

4. Bayesian information criteria (BIC) 560" —35 A 20 20

1At least for nested families such as polynomials
il Fisher-test is however a possibility (although arbitrary)
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4. Different degrees of freedom

The p-value correction

» For binned fits, in the high statistics limit then A ~ x° and has corresponding

P(X27 Npins — npars)

» Can now find x’? namely that which would have given the same p-value but with

different degrees of freedom (npas = 0) and
Acorr = Xlz =A

» Correction depends on number of bins, num

consequently,

+(x*=x% (1)
ber of parameters and quality of original

Avrbitrary units
2 N
g 3
8 8

@
g
8

fit (1)

400
3

|
Dof= 158

] —————

Dof = 159 100

300

Change of x2 for change of DoF to 160

Dof = 159

Dof =158

Il L L L L L L L L
0102 03 04 05 06 07 08 09 1
p-value

> Can be applied for specific p-value but also

2 2
X —x = Npar so

1 2 3 4 5
Change of 2 for change of DoF to 160

should note that on average:

Acorr ~ N+ Npar (2)

il path - :ChisquareQuantile(1-p,160) — TMath::ChisquareQuantile(1-p,160-N)
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4. Different degrees of freedom

Other forms of correction

\{

Using the p-value argument suggests:
/\corr =-2InL + Npar (3)

» There are other forms of likelihood correction out there

Aikaike information criterion (AIC):

v

Acors = —21n £ + 2Npar (4)
» Bayesian information criterion (BIC):

Acorr =-=2InL + Npar |n(n) (5)

v

In general they take the form:
Ncorr = =21In L + cNpar (6)

where ¢ is some ‘“correction value” to be determined
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4. Different degrees of freedom

Back to the example case with higher order functions

> Take the same dataset and now try many functions (of different orders)

> Scan the likelihoods as before now applying a correction, c, for different degrees of
freedom

250
r Polynomial (2pars)

— Polynomial (3pars)
——— Polynomial (4pars)
———— Polynomial (5pars)

Polynomial (6pars)

Exponential Sum (2pars)
- Exponential Sum (4pars)
- Exponential Sum (6pars)
————— Power Law Sum (2pars)
rrrrr Power Law Sum (4pars)

200

Events /(1)
T
——

150— eewdT e« Power Law Sum (6pars)
R L AN N Laurent Series (2pars)
~ Laurent Series (3pars)
- Laurent Series (4pars)
L Laurent Series (5pars)

100 — Laurent Series (6pars)

50—

W

g

=
o

115 120 125 130 135 140 145 150
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4. Different degrees of freedom

Example case with higher order functions

> Profile same dataset with many functions (of different orders)
» With no correction, c =0
> Best Fit: 6th order polynomial (highest order tried)

= —— Polynomial (2pars) = L
S 516 . —— Polynomial (3pars) 2 216
] No Correction — P e S r Minimum Envelope (No Correction)
= —— Polynomial (6pars) =
S 214 ——— Exponenial Sum (2pars) S 214 -
o [ Exponential Sum (4pars) o H 68.3% Interval
+ r + L
< 2121~ : < 2121~ 95.4% Interval
ENWWY Laurent Series (2pars) F
L Laurent Series (3pare) L
210 Laurent Series (4pars) 210
F Laurent Series (5pars) F
L Laurent Series (6pars) F
208 208~
206 206 /
2041 2041
2020 2021 e
o b b b D b b | P N B P T A S|
-1 -05 0 0.5 1 15 2 25 -1 -05 0 0.5 1 15 2 25
H H
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4. Different degrees of freedom

Example case with higher order functions

> Profile same dataset with many functions (of different orders)
» With approx. p-value correction, ¢ =1 (A +1 per dof)
> Best Fit: 2 parameter power law

c 2221 Sy o € 2221
% Approx. p-value— Ee:rg:miggsg % g
- P- T oo et Minimum Envelope (Approx. p-value)
& 22013 oo e o 220
§ I oo ) g - U
+ 2181 + 218F
< r - < r 95.4% Interval
216 \Wig: o Laurent Series (2pars) 216
L Laurent Series (3pars) r
= Laurent Series (4pars) r
214 Cairen seros sy 214f
212 212
210 210[°
e ~ 208, /
2060 L LT Ll 206 WTM T S R AT
1 05 0 05 15 2 25 1 -05 0 05 1 15 2 25
N H
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4. Different degrees of freedom

Example case with higher order functions

> Profile same dataset with many functions (of different orders)
» With Aikaike correction, ¢ =2 (A 42 per dof)

> Best Fit: 2 parameter power law

5 224 Polymomial Zpars) s 2247
£ Akaik e £ o -
g 222 alke T e e S 222 Minimum Envelope (Akaike)
2 [ Polynomial (Gpars) 2 0
S r Exponential Sum (zpars) S F - 68.3% Interval
+ 220~ + 2201~
< r e < r 95.4% Interval
218 \ W %o R e Laurent Series (2pars) 218+
. Laurent Series (3pars) r
- Laurent Series (4pars) N
2161 Coren S apary 2161
N R / r
r / r
214 / 214
212 2121 y
210F 210F
208 L L T b L 208 “(TTTTTTTTT'TT'M ara St W
-1 -05 0 0.5 1 15 2 25 -1 -05 0 0.5 1 15 2 25
H H

Matthew Kenzie (CERN) Liverpool HEP Seminar Model choice uncertainti




4. Different degrees of freedom

Bias and coverage for many order function

> Now comparing envelope of all functions with different correction schemes
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5. How large a correction?
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5. How large a correction?

What happens to the error?

> Over a set of pseudoexperiments the error when using the envelope increases
» This quantifies the systematic uncertainty contribution from the model choice

> The size of this systematic is smaller depending on the choice of ¢

%) E
£ [
31600; + fit power law
B 1400
%1400: + approx. p-value
[} [
§‘1200; % p-value
S L
5 1000: + Akaike
2 [
E 8001
=] .
z L
4
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5. How large a correction?

Central value and error dependence on the correction

> As a function of the correction value the uncertainty (and central value) can change
> At lower values of ¢ you have a large statistical uncertainty

> In principle for this example if ¢ = 0 the statistical error is infinite

> At larger values of ¢ you have a potentially large bias

o 4 T
35 = Fit value '

3 I 65.3% Interval 1

2'2 95.4% Interval !

1

0.5
0 1
-0.5 1
_ TR L1 L L T TR S T |
00,97,02,03,04,05,06,07,08,0. 0,4.7,12,13,14,15,16,1.7,18,19,20,21,22,23,24,25,PV
0/ Ga}:/‘]vo?/ '70‘;/470?/ ‘70‘/5/ ‘70§/’70f / Uoﬁ/ Uog/ dof /éﬂf\fz%?/ Uof/ dof/ '705/ ‘70[6 7o/ ‘7073/ ‘70?/ ‘70)9 / Uoft/fl’o?/ '70‘7?/ o/ ‘705/ o e
z ke

Co, "o,
r's%o,, X Do, e

A correction
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5. How large a correction?

How reasonable is it to quote an uncertainty like this?

» Difference in A between the true and fitted values of 1 follows a x? distribution.
c=0 c=1 c=2

2 2 2
5 ) —x*ndof=1 5 —x*ndof=1 5 —x*ndof=1
] 1
2 B b AlToys 2 b AlToys 2 b AlToys
g [ —— Same function 3 —— same function 3 —— same function
< < <
100 —— Different function 101l —— Different function —— Different function
107
£ 10?
10°F
£ 10°
12 3 4 5 6 7 8 9 10
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5. How large a correction?

What correction to use?

7
» As we have seen the corrected likelihood A H
takes the form, E H
8
Acorr =—2In L: + CNpar 'E é
3 H
™ i
> The coverage is largely independent of the 5
choice of ¢ v
> Within reason the choice for the value of ,O\ g
c can be motivated by other + s
considerations ‘F S
> This will depend on the application and
the size of the dataset available 7
» Ends up being a trade off between: B
> the size of the correction (eventual bias) ¢
> statistical precision B .
» Depends on specific analysis and individual 8 _ §
preference Sie H
05 1 15

2 25‘ 3
Correction / par
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6. Use cases
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6. Use cases

Higgs to two photons at CMS

» This is what the technique was developed for

> 25 analysis categories all with different signal to background, resolution and
background shapes

> Perform a simultaneous fit across all 25 for signal size

> Profile between 4-16 background functions in each category
> Order of 50 additional continuous nuisance parameters in this fit also
» Many of which are correlated across categories

» Without nuisance parameter correlation then number of combinations goes like

N, = Z n; (7)

for ¢ categories with n; functions in each.
» With correlated nuisances then every combination is required which goes like

Nc = H n; (8)

For CMS H — vy = 16% ~ 10*° combinations
For any reasonable practical use this has to be reduced

v

v
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6. Use cases

Technical implementation

> These studies were developed and performed in RooFit

> Specialised class written: RooMultiPdf
> Not in RooFit public release yet
> Private version being used by both CMS and ATLAS

» How to reduce numbers of combinations (given 10% minimisations is impractical
for Higgs combination)

Step 1:
Fix all continuous
nuisance parameters
to some sensible
starting value

> Run continuous and discrete parts of
minimisations separately in iterative
procedure /
> Have found that in the H — ~+ case
the true likelihood is found after
=~ 3 — 4 iterations
> Now number of minimisations goes
like

Stepa:
Compare the values of
the min likelihood for
Steps 2and 3 (if itis
fails some threshold
criterion then repeat
from Step 1)

Step 2:
Find discrete nuisance
parameter values
which minimise
likelihood

Step 3:
Now fix discrete
nuisance parameters

and float all
continuous
parameters

Nc = N[ Z n;i (9)

for N, iterations
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Use in Higgs analyses

6. Use cases

197 16 (8 TeV) + 5.1 b (7 Tev)

197 b (8 TeV) + 5.1 b (7 Tev)

Events / GeV

200}

8 TeV Untagged 1

Events / GeV

S8t
8 component
+10
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7. The Bayesian way

Bayesian formalism

— Laurent
— Exponential

» So far the method discussed has been in a
frequentist formalism

— Power Law
— Polynomial

Events / GeV

» Work ongoing to publish a Bayesian equivalent

100|

» The “discrete” profiling equates to adding up
2
posterior PDFs each with a weight ~ e™X
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8. Extensions and Open Questions

Extensions and Open Questions

>

Studies with mixed functions

> Given a comparison of two functions of the form e™P* and x~P does it make sense to
try fePLX (1 — f)x—P2?
> This is then 3 free parameters not 1. Does the correction handle this appropriately?

> Is there an analytical proof of which correction to use?

> How should one assess how many “model” choices is appropriate?

> Are there other ways of sampling more of the “model phase space’ cheaply?
» Can one “interpolate’ gaps in the discontinuous profiles?

» What happens in very non-Gaussian situations?
> Are there fairer ways of generating MC from mixed model hypotheses?
» How does one generate an “AsimoV’ toy from a composite model?

» How can we use the method to set Bayesian credible intervals rather than
frequentist confidence intervals?

> What, if any, prior should be used

» How do you decide how many models to include in the envelope if the choice is
infinitely many?
> Fisher test
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9. Summary

Summary

» Demonstrated a new method for treating model choices as discrete nuisance
paramters
> “Profile" the choice and take the “envelope’
> Choice of correction open to user
> Choice of which models to include open to user

v

The method in a toy example shows small bias and good coverage

The method has been used in a real life case

» Small bias and good coverage shown under several scenarios
> Lead to improvements in technical implementation and recommendations for use

v

v

Similar studies are highly recommended for each use case

v

Several possible extensions and open questions

Thanks for your attention!
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