Detector R&D for a CLIC Vertex Detector

HEP seminar University of Liverpool January 22nd, 2014

Dominik Dannheim (CERN-LCD) on behalf of the CLIC detector and physics study

January 22, 2013

Outline

- •CLIC physics and accelerator
- •Vertex-detector requirements
- •Detector optimization studies
- •R&D on sensors and readout
- •Powering, cooling and detector integration
- Summary / Conclusions

CLIC detector & physics study

CLICdp member institutes

- Dept. of Physics, Aarhus University
- Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy
- Vinca Institute for Nuclear Sciences, Belgrade
- University of Bergen
- The School of Physics and Astronomy, University of Birmingham
- Institute of Space Science, Bucharest
- Dept. of Physics, University of Cambridge
- Dept. of Physics and Technology, AGH University of Science and Technology, Cracow
- Polish Academy of Sciences, Cracow
- CERN, Geneva
- University of Glasgow
- Argonne National Laboratory, Lemont
- Australian Collaboration for Accelerator Science (ACAS), Melbourne
- University of Michigan, Ann Arbor
- NC PHEP, Belarusian State University, Minsk
- MPI Munich
- Dept. of Physics, Oxford University
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague
- Pontificia Universidad Católica de Chile, Santiago de Chile
- Spanish Network for Future Linear Colliders
- Dept. of Physics, Tel Aviv University
- •Pre-collaboration structure based on "Memorandum of Cooperation": http://lcd.web.cern.ch/lcd/Home/MoC.html
- •CERN acts as host laboratory
- •Currently 21 institutes from 16 countries, more contributors most welcome!
- •The CLIC accelerator R&D is being conducted in collaboration with ~48 institutes

Hadron vs. lepton colliders

p-p collisions

e⁺e⁻ collisions

e+/e- are point-like Proton is compound object \rightarrow Initial state well defined (\sqrt{s} / polarization) → Initial state not known event-by-event \rightarrow Limits achievable precision \rightarrow High-precision measurements **Circular colliders feasible** Linear Colliders (avoid synchrotron rad.) High rates of QCD backgrounds Cleaner experimental environment → trigger-less readout \rightarrow Complex triggering schemes \rightarrow High levels of radiation \rightarrow Low radiation levels \sqrt{s} constrained by design \sqrt{s} can be tuned \rightarrow Threshold scans High cross-sections for colored-states Superior sensitivity for electro-weak states

January 22, 2013

CLIC physics program

•CLIC: linear e⁺e⁻ collider concept, √s from few hundred GeV up to 3 TeV
•Physics goals:

•Precision measurements of SM processes (Higgs, top)

•Precision measurements of new physics potentially discovered at 14 TeV LHC

•Search for new physics: unique sensitivity to particles with electroweak charge

ILC and CLIC

- Linear e⁺e⁻ colliders
- Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC

superconducting RF cavities (like XFEL)
Gradient 32 MV/m
√s ≤ 500 GeV (1 TeV upgrade option)
Focus on ≤ 500 GeV, ongoing studies for 1 TeV

CLIC

•2-beam acceleration scheme operated at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV

CLIC implementation

- Example of staged CLIC implementation underground near CERN
- ~48 km tunnel length for 3 TeV stage
- The site specifications do not constrain the implementation to this location

Machine parameters

	LHC at 14 TeV	ILC at 500 GeV	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	1x10 ³⁴	2x10 ³⁴	6×10 ³⁴	
BX separation	25 ns	554 ns	0.5 ns	drives timina
#BX / train	2808	1312	312	requirements
Train duration	70 µs	727 μs	156 ns	for detectors
Train repetition	14 kHz	5 Hz	50 Hz	
Duty cycle	~1	0.36%	0.00078%	
$\sigma_{\rm x}$ / $\sigma_{\rm y}$ [nm]	15000 / 15000	474 / 6	≈ 45 / 1	very small beam sizes
σ _z [μm]	~50000	300	44	at interaction point

Beam-induced backgrounds

January 22, 2013

- Train occupancies up to 3% in vertex region (including clustering and safety factors)
- moderate radiation exposure, ~10⁴ below LHC

Region	Readout granularity	Max. occup.	NIEL [n _{eq} /cm²/y]	TID [Gy/y]
VXB	20 µm x 20 µm	1.9 %	4x10 ¹⁰	200
VXEC	20 µm x 20 µm	2.8 %	5x10 ¹⁰	180
FTD pixels	20 µm x 20 µm	0.6%	2.5x10 ¹⁰	50
FTD strips	10 cm x 50 µm	290 %	1x10 ¹⁰	7
SIT	9 cm x 50 μm	170 %	2x10 ⁹	2

January 22, 2013

Vertex-detector requirements

B

• Efficient tagging of heavy quarks through precise determination of displaced vertices:

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$$
$$a \sim 5 \,\mu m, \ b \sim 15 \,\mu m$$

- → good single point resolution: σ_{SP} ~3 µm
 - \rightarrow small pixels ~25x25 μ m², analog readout
- → low material budget: $X \leq 0.2\% X_0$ / layer
 - \rightarrow corresponds to ~200 μ m Si, including supports, cables, cooling
 - → low-power ASICs (~50 mW/cm²) + gas-flow cooling
- Time slicing with ~10 ns accuracy, to suppress beam-induced backgrounds
 - \rightarrow High-resistivity sensors, fast readout
 - → Hybrid concept (like for LHC detectors): ultra-thin sensors
 - + high-performance r/o ASICs

CLIC detector concepts

CLIC_ILD & CLIC_SID

- •detector concepts based on concepts developed for International Linear Collider (ILC):
- low-mass vertex detector with ~25x25 μm² pixels
 main trackers: TPC + silicon (CLIC_ILD) or all silicon (CLIC_SiD)
- •fine-grained **PFA calorimetry**, 1+7.5 Λ_i
- •4-5 T solenoids-
- •return yoke instrumented for muon ID
- •complex forward region with final beam focussing

Vertex-detector concepts

- barrel/end-cap layout
- 3 double layers or 5 single layers in central region
- 3 double layers or 7 single layers in forward region (θ>7°)
- ~25x25 µm² pixel size
- ~1 m² area, ~2 Gpixels
- R_i ~ 27-31 mm
- beam pipes with conical sections
- optimized for high performance and low background occupancy

Performance in simulation

- Baseline physics simulation layouts:
 - very low material budget
 - large coverage
 - excellent performance in simulation
- Engineering studies add realism:
 - increased material budget
 - slightly reduced coverage
- Ongoing studies: assess impact of detector design on performance and develop realistic simulation models
 - parametric fast-simulation studies
 - flavor-tagging performance studies
 - impact on physics performance

January 22, 2013

Parametric fast-simulation studies

- Parametric fast-simulation studies
- Main benchmark: transverse impactparameter resolution σ(d0), closely linked to flavor-tagging perform.
- Assess influence of detector geometry and technology on σ(d0):
 - various detector layouts
 - different single-point resolutions
 - changes in material budget

Flavor-tagging performance

- Use b- and c-tagging performance as benchmark for detector designs
- Technically challenging full-simulation study (multivariate analysis)
- Results for geometries following engineering studies:
 - Geometry with 2x more material in vertex layers
 → 5% 35% degradation in performance
 - Spiral end-cap geometry (required for air-flow cooling)
 - → few problematic regions with reduced coverage, otherwise similar performance as for disk geometry
 - 3 double layers vs. 5 single layers
 - \rightarrow small improvement for lower-energy jets (less material per layer)

Physics performance

- Ultimate benchmark for vertex-detector: impact on physics analysis results
- Example: achievable precision in $e^+e^- \rightarrow Hv_e^- \overline{v}_e$, $H \rightarrow b\overline{b}, c\overline{c}$
 - Dominant Higgs-production process at 3 TeV
 - Large backgrounds from light-flavor decays
 - ightarrow analysis depends strongly on b and c tagging

- Consider ± 20% change in wrong-flavor rejection
 - Dominant backgrounds:
 - H→bb: light flavor jets
 - H→cc: light flavor and b-jets
 - Impact on achievable statistical precision for cross-section x branching-ratio measurements, for $\sqrt{s}=3$ TeV and L_{int}=2 ab⁻¹:

analysis	stat. uncert. on σxBR	change for ±20% fake rate
H→bb	0.23%	±6-7%
Н→сс	3.1%	±15%

P. Roloff, N. Alipour Tehrani

Pixel-detector technologies

	Monolithic	3D-integrated	Hybrid	
Examples	FPCCD, MAPS, HV- CMOS	SOI, MIT-LL, Tezzaron, Ziptronix	Timepix3/CLICpix	
Technology	Specialised HEP processes, r/o and sensors integrated	Customized niche industry processes, high density interconnects btw. tiers	Industry standard processes for readout; depleted high-res. planar or 3D sensors	
Interconnect	Not needed	SLID, Micro bump bonding, Cu pillars		
granularity	down to 5	µm pixel size	~25 µm pixel size	
Material budget	\sim 50 μ m total thic	kness achieveable	~50 µm sensor + ~50 µm r/o	
Depletion layer	partial	partial or full	full \rightarrow large+fast signals	
timing	Coarse (integrating sensor)	Coarse or fast, depending on implementation	Fast sparsified readout, ~ns time slicing possible	
R&D examples	ILC, ALICE, RHIC	ILC, HL-LHC	CLIC, ATLAS-IBL, HL-LHC	

Readout elektronic Bump-Bond +-+ +-Track 18

January 22, 2013

Medipix/Timepix hybrid r/o chip family

Chip	Year	CMOS Process	Pitch [µm²]	Pixel operation modes	r/o mode	Main applications
Timepix	2006	250 nm	55x55	∫TOT or ToA or γ counting	Sequential (full frame)	HEP (TPC)
Medipix3RX	2012	130 nm	55x55	γ counting	Sequential (full frame)	Medical
Timepix3	2013	130 nm	55x55	TOT + ToA, γ counting + ∫TOT	Data driven	HEP, Medical
Smallpix	2014	130 nm	~40x40	TOT + ToA, γ counting + ∫TOT	Sequential (data comp.)	HEP, Medical
CLICpix demonstrator	2013	65 nm	25x25	TOT + ToA	Sequential (data comp.)	Test chip with 64x64 pixel matrix
CLICpix	tbd	65 nm	25x25	TOT + ToA	Sequential (data comp.)	CLIC vertex detector

TOT: Time-Over-Threshold

- → Energy
- ToA: Time-of-Arrival
 - \rightarrow Time stamping

- Taking advantage of smaller feature sizes:
 - Increased functionality and/or
 - Reduced pixel size
 - Improved noise performance

Hybrid r/o technology: CLICPix

- 65 nm CMOS hybrid r/o chip, targeted to CLIC vertex detectors
- based on Timepix/Medipix chip family, synergy with HL-LHC pixel r/o projects (RD 53 collaboration on 65 nm r/o)
- demonstrator chip produced with fully functional 64 x 64 pixel matrix
- 25 µm pixel pitch
- simultaneous 4-bit time (TOA) and energy (TOT) measurement per pixel
- → front-end time slicing < 10 ns</p>
- selectable compression logic: pixel, cluster + column-based
- \rightarrow full chip r/o in less than 800 µs (at 10% occup., 320 MHz r/o clk)
- power pulsing scheme $\rightarrow P_{avg} < 50 \text{ mW/cm}^2$
- r/o tests on prototypes:
 - chip fully functional
 - measurements confirm simulations

S. Kulis, P. Valerio

CLICpix: time and energy measurement

CLICpix: baseline equalization

Calibrated spread is 0.89 mV (about 22 e-) across the whole matrix

S. Kulis, P. Valerio

CLICpix: energy measurement

- Measure charge released in each pixel
 → Improve position resolution through interpolation
- Time-Over-Threshold (TOT) measurement (4-bit precision)
- Calibration measurement using external test pulser:

CLICpix: uniformity of gain and noise

- Uniform gain across the matrix
- Gain variation ~4.2% r.m.s. (for nominal feedback current)

- Uniform ENC across the matrix
- Mean ENC ~55 e⁻ (without sensor)

CLICpix: summary

Parameter	Unit	Simulation	Measurement
Rise time	[ns]	50	-
TOA accuracy	[ns]	<10	<10
Gain	[mV/ke ⁻]	44	40 *)
Dynamic range	[ke ⁻]	44 (configurable)	40 *) (configurable)
INL (TOT)	[LSB]	<0.5	<0.5
ENC (w/o sensor)	[e ⁻]	~60	~55 *)
DC spread σ (uncalibrated)	[e ⁻]	160	128 <mark>*)</mark>
DC spread σ (calibrated)	[e ⁻]	24	22 *)
Power consumption	[µW/pixel]	6.5	7

*) results obtained with electrical test pulses

- good agreement between simulations and measurements
- power pulsing works according to specifications (>10x reduction for power-off state)
- programmable power on/off times, front-end wake up within ~15 μ s
- Radiation test ongoing (up to 1 GRad TID)

S. Kulis, P. Valerio

Thin-sensors

- Micron (UK) + IZM (DE) and VTT/Advacam (FI) Timepix planar sensor assemblies with 55 μm pitch
 - Test feasibility of ultra-thin sensors and assemblies
 - Assemblies delivered: 50-200 μm sensor thickness, 100-450 μm ASIC thickness
 - Test beams at DESY in 2013
 - Sensor calibration (non-linear TOT response)
- sensors matching 25 μ m² CLICpix footprint \rightarrow 2014
- ultimate goal: 50 μm thick sensors + 50 μm thick ASICs

Alternative sensor concepts:

- Low-Gain Avalanche Detectors (LGAD) with charge multiplication
- \rightarrow thin sensors with large and fast signals (RD50 project with CNM)
- HVCMOS CCPD with capacitive coupling
- ightarrow no more bump bonding necessary

50 μm dummy wafer

Test beam setup at DESY

January 22, 2013

Thin-sensor assemblies in test beam

Threshold scan Advacam 50 µm active edge

Charge sharing

Linear interpolation

 Non linear charge sharing between pixels, parameterized by η function:

$$\eta(x) = Q_{cluster} \times \frac{erf(\frac{x}{\sigma}) + 1}{2} \qquad if \ x < pitchX/2$$

$$\eta(x) = Q_{cluster} \times \frac{erf(\frac{pitchX - x}{\sigma}) + 1}{2} \qquad if \ x > pitchX/2$$

- Single parameter o describing diffusion of charge cloud in electric field
- Obtain o from minimization of position resolution

η correction

M. Benoit, S. Redford, et al.

January 22, 2013

Resolution with eta correction

de

- Comparison linear interpolation / η correction for 2-hit clusters (17% of all tracks): $\sigma_{sp} \sim 9 \ \mu m$ for linear interpolation $\sigma_{sp} \sim 3 \ \mu m$ with η correction
- Note: selection bias of 2-hit clusters not unfolded

M. Benoit et al.

Timepix calibration

31

- Calibration of non-linear Timepix energy response with radioactive sources + fluorescence
- Parameterization with 4 parameters per pixel
- \rightarrow Improves accuracy of position determination with charge-weighting methods

Simulations

- TCAD and MC simulations of charge propagation in silicon sensors
 - \rightarrow effect of sensor layout and material
 - \rightarrow effect of E and B fields (Lorentz angle)
 - \rightarrow comparison with lab and test-beam measurements
 - \rightarrow tuning of digitization models for full-detector simulation
- ALLPix general purpose pixel detector simulation and digitisation framework
 - ightarrow used for simulation of test-beam and lab measurements
 - \rightarrow One-day tutorial at CERN on January 24th

Integrated / hybrid technology: HV-CMOS

HV-CMOS MAPS:

- 180 nm High-Voltage CMOS process:
 Vbias~100 V → depletion layer ~10-20 μm
- integrated sensors with fast signal collection
- baseline technology for Mu3e at PSI

Hybrid option:

Capacitive Coupled Pixel Detector (CCPD)

- HV-CMOS chip as integrated sensor+amplifier
- capacitive coupling from amplifier output to r/o chip through layer of glue → no bump bonding!
- test chip for ATLAS FEI4 and Timepix produced
- proof of principle measurements

HV-CMOS ATLAS/CLICpix prototype CCPDV3

To CLICPIX

New HVCMOS prototype, to test capacitive coupling with CLICpix demonstrator

6.4 mm² split in ATLAS FEI4 + CLICpix parts

Includes 64x64 CLICpix matrix with 25 μ m pitch

2-stage amplifier

AMS H18 180 nm process

Submission November 2013

January 22, 2013

Through-Silicon Vias (TSV)

35

Through Silicon Via (TSV): vertical electrical connection passing through Si wafer

- \rightarrow eliminates need for wirebonds
- \rightarrow 4-side buttable chips

January 22, 2013

 \rightarrow increased reliability, reduced material budget

Example: Medipix TSV project (ALICE, CLIC, ACEOLE and AIDA) with CEA-Leti

- 130 nm IBM Medipix(RX) wafers, via-last process
- successful completion of first phase: demonstrate feasibility
- on-going second phase: demonstrate good yield

CLICpix power-pulsing + delivery requirements

Small duty cycle of CLIC machine allows for power reduction of readout electronics: turn off front end in gaps between bunch trains

Challenging requirements:

- Power budget <50 mW/cm² average (air-flow cooling limit)
- High peak current > 40A/ladder
- Different timing analog/digital electronics
- High magnetic field 4-5T
- Material budget < 0.1% X₀ for services+supports
- Regulation < 5% (60 mV) for analog part

CLICpix powering states

CLICpix power-pulsing + delivery concept

Flex-Kapton + dummy-load setup:

- Power pulsing with local energy storage in Si capacitors and voltage regulation with Low-Dropout Regulators (LDO)
- FPGA-controlled current source provides small continuous current
- Low-mass Al-Kapton cables
- Prototypes for analog + digital powering of CLICpix ladder

C. Fuentes

CLICpix power-pulsing + delivery results

- Measurements on prototypes for digital and analog powering of ladders:
 - I_{ladder}<300 mA; P<45 mW/cm²
 - Voltage stability:
 ΔV~16 mV (analog), ~70 mV (digital)
 - ~0.1% X₀ material contribution, dominated by Si capacitors
 - Can be reduced to ~0.04% X₀ with evolving Si capacitor technology: 25 μF/cm² → 100 μF/cm²

C. Fuentes

Cooling: simulations

Cooling studies for CLIC vertex detector

- ~500 W power dissipation in CLIC vertex area
- spiral disks allow air flow through detector
- ANSYS Computational Fluid Dynamic (CFD) finite element simulation
- \rightarrow air cooling seems feasible
- 5-10 m/s flow velocity, 20 g/s mass flow

Cooling: experimental verification

- built mock-up to verify simulations (temperature, vibrations)
- measurements on single stave equipped with resistive heat loads:
 - air flow
 - temperature
 - vibrations (laser sensor)
- · comparison with simulation

Temperature increase: measurement + CFD simulation

F. Nuiry, C. Bault, F. Duarte Ramos, M.-A. Villarejo Bermudez, W. Klempt

January 22, 2013

CLIC Vertex R&D

40

Mechanical integration

- Detector integration: low-mass supports, services, assembly
- Taking into account constraints from powering and cooling
- Detailed material-budget calculations, comparison with simulation models

Low-mass supports

clc

- Aim for only ~0.1% X0 per layer for powering + supports
 → ~0.05% X0 for supports
- Evaluating various designs and materials based on:
 - Carbon-Fiber-Reinforced Polymers (CFRP)
 - Silicon-Carbide (SiC) foams
- Bending stiffness validated with calculations, finite-element simulations and measurements

SiC foam assembly 532.09 um 20 µm Si sensor Si glue gap .5 mm SiC foam Goldstein

January 22, 2013

ANSYS FE simulation for CFRP

CLIC Vertex R&D

CFRP support prototypes

F. Nuiry, C. Bault, F. Duarte Ramos, W. Klempt

Summary and Conclusions

- CLIC accelerator provides:
 - unique potential for discovery and precision physics at the TeV scale
 - challenging requirements for vertex detectors
- Examples for active R&D on the CLIC vertex detector:
 - Hybrid pixel detector technology
 - Power-delivery and power pulsing
 - Detector cooling and mechanical integration
- Synergy between CLIC and other vertex-detector R&D projects
- Other groups most welcome to join the CLICdp studies

Additional material

Higgs production

m _H =125 GeV	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	240 fb	129 fb	57 fb	13 fb	6 fb	1 fb
$\sigma(e^+e^- \rightarrow H\nu_e\bar{\nu}_e)$	8 fb	30 fb	75 fb	210 fb	309 fb	484 fb
Int. \mathcal{L} (4-5 years)	250 fb ⁻¹	350 fb ⁻¹	500 fb ⁻¹	1000 fb ⁻¹	1500 fb ⁻¹	2000 fb ⁻¹
# ZH events	60000	45500	28500	13000	7500	2000
$\# H\nu_e\bar{\nu}_e$	2000	10500	37500	210000	460000	970000

January 22, 2013

CLIC two-beam acceleration scheme

Two-beam acceleration scheme

- No individual RF power sources
- Demonstrated in dedicated test facility at CERN (CTF3)

drive beam 100 A, 239 ns 2.38 GeV – 240 MeV

Drive Beam supplies RF power

- 12 GHz bunch structure
- low energy e⁻ (2.4 GeV 240 MeV)
- high current (100A)

Main beam for physics

- high energy e^+/e^- (9 GeV 1.5 TeV)
- low current 1.2 A

LC pixel R&D examples

Project	Technology	Target experiments	Groups	
Mimosa	fully integrated	ALICE, CBM, BES-3, ILD@ILC	IPHC Strasbourg	
Arachnid / Cherwell	CMOS MAPS Tower Jazz 0.18 um	generic vtx / tracking / calo, ALICE ITS	Bristol, Birmingham, Queen Mary, RAL, Daresbury	
Chronopix	fully integrated CMOS MAPS IBM 90 nm	SiD@ILC	Oregon	
FPCCD	integrated sensor , separate r/o, Hamamatsu CCDs	ILD@ILC	KEK, Tohoku	
DEPFET	integrated sensor , separate readout, MPG-HLL DEPFET	Belle II, ILD@ILC	Bonn, MPI Munich, Barcelona, Santander, others	
VIP2b / SDR / MAMBO4	3d integrated / SOI Tezzaron + STM 130 nm, MIT LL	generic technology tests, Super-Belle, SiD@ILC	FNAL, KEK, OKI, INFN, others	
HV-CMOS CCPD	active sensor, 180 nm CMOS	HL-ATLAS, CLIC	Heidelberg, CERN, CPPM, Bonn, Geneva	
CLICpix	hybrid r/o, 65 nm CMOS	CLIC, SID@ILC	CERN	

Low-Gain Avalanche Detectors (LGAD)

CLIC Detector and Physics Collaboration Meeting

01/10/2013

Low Gain Avalanche Detectors (LGAD)

RD50 project: Fabrication of new p-type pixel detectors with enhanced multiplication effect in the n-type electrodes

Institutes participating in this project:

G. Pellegrini (IMB-CNM), G. Casse (Liverpool University), H. Sadrozinki (UCSC), S.

Grinstein (IFAE), W. de Boer (KIT), I. Vila (IFCA), R. Bates (University Glasgow), M.

Bruzzi (INFN Florence) M. Moll (CERN)

See G. Pellegrini's talk at CLIC January meeting, S. Hidalgo's talk at RD50 meeting at Albuquerque (2013) and H. Sadrozinski, "Exploring charge multiplication for fast timing with silicon sensors" 20th RD50 Workshop, Bari (2012)

D. Quirion Institut de Microelectrònica de Barcelona

January 22, 2013

CLIC Vertex R&D

S.

Low-Gain Avalanche Detectors (LGAD)

CLIC Detector and Physics Collaboration Meeting

01/10/2013

Low Gain Avalanche Detectors (LGAD): run

AC Microstrip Epi 50um deep junction

See G. Pellegrini's talk at CLIC January meeting and

H. Sadrozinski, "Exploring charge multiplication for fast timing with silicon sensors" 20th RD50 Workshop, Bari (2012)

Power-pulsing in test beam

Power Pulsing with Timepix:

- Not designed for power pulsing, single bias line for all pixel rows
- But possibility to switch on/off all preamps through bias DAC

CERN SPS test-beam campaign in June 2012:

- Power pulsing of the Chip and operation in sync with LHCb/Timepix tracking telescope
- Shutter-based readout for 25 μs
- Adjustable delay between power-on and shutter-start times

