Top Quark Prospects at LHCb

By Henry Brown

Top Overview

Top Quark Introduction

- Heaviest fundamental particle discovered
 - Mass of ~173 GeV/c²
 - Decay width $\Gamma=1 \text{ GeV} > \Lambda_{QCD} (200 \text{ MeV})$
 - Decays before hadronization
 - Lifetime ~0.5x10⁻²⁴ s
 - σ @ 8 TeV = 234 <u>+</u> 15 pb (NNLO)
 - 14 TeV increases to nearly 1 nb
 - LHC dominated by gluon fusion (85%)
 - Tevatron dominated by qq annihilation

Decay Modes of Top

- CKM matrix means 99.9% of decays are t \rightarrow Wb
 - Top decays described in terms of W decay modes then
 - All hadronic = $W \rightarrow qq'$ resulting in 4 jets + 2 *b*-jets
 - Semileptonic = $W \rightarrow \mu v + W \rightarrow q \overline{q}'$
 - Leptonic = WW \rightarrow //vv (/=µ,e)

Higgs

 High mass (2xm_{top}) Higgs couples strongly to top quarks

BSM Decays?

- Potential BSM decay modes as well
 - High mass high coupling to Higgs
- Light charged Higgs instead of a W?
- Further reading: M. Hashemi, arXiv:hep-ph/ 1305.2096

Top Mass

- Top cross-section is sensitive to the mass
- Free parameter of the SM
- Direct and indirect determinations of mass [Not covered in depth here]

Top Asymmetry Introduction

- There is an asymmetry of top vs antitop as a function of scattering angle between the quark and the incident partons
- Sensitive to BSM corrections (i.e. Z') which may not manifest in significant changes in cross-section

Top Asymmetry Introduction

- The top asymmetry is driven by higher order corrections to NLO diagrams
 - i.e. Diagrams (a) and (b) interfere, as does (c) with (d)

Top Asymmetry Tevatron

- Proton-antiproton collisions
- Top preferentially emitted in quark direction
- Measure A_{FB}

Top Asymmetry Tevatron

• CDF Measured:

 $A_{FB}(|\Delta y| > 1.0) = 0.611 \pm 0.256$

• In comparison to SM expectations of:

 $A_{FB}(|\Delta y| > 1.0) = 0.123 \pm 0.018$

 A lot of other measurements (i.e. high mass top pairs) show typically 2.5-3.5 σ deviation from SM predictions

Some more Tevatron results

TeVatron summary

S.Westhoff, arXiv:1108.3341

Top Asymmetry LHC

- Proton-proton collider means symmetric starting state
 - Can't tag original quark direction easily
 - Can't measure A_{fb}
- Top emitted preferentially in quark direction
- Valence quarks make this more forward
- Measure A_c charge asymmetry

 $A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$

SM A_c ~ 0.01

Top Asymmetry LHC

• All results are in agreement with SM.

ATLAS

Top Asymmetry LHC Future

- ATLAS & CMS 8 TeV 20 fb⁻¹ papers on the way out soon
- Quickly approaching systematic limits

Top Asymmetry LHCb

- Central region detectors subject to high proportion of gluon fusion events
 - Dilutes signal
- Higher rapidity provides better purity

Top Asymmetry LHCb

 LHCb's purity in the high η is better for top asymmetry measurements

Channels

• Generator level expectations

$d\sigma(\text{fb})$	7	TeV	7	8	TeV		14	- TeV	/
lb	285	±	52	504	±	94	4366	±	663
lbj	97	±	21	198	±	35	2335	\pm	323
lbb	32	±	6	65	±	12	870	\pm	116
lbbj	10	±	2	26	±	4	487	±	76
l+l-	44	±	9	79	±	15	635	±	109
$\rightarrow l^+l^-b$	19	±	4	39	±	8	417	±	79
				1					

For μeb , divide by 2

Top Asymmetry LHCb

$$A^{lb} = \frac{N^{l^+b} - N^{l^-b}}{N^{l^+b} + N^{l^-b}}$$

Channel	$7 \mathrm{TeV}$	$8 \mathrm{TeV}$	$14 \mathrm{TeV}$
$A^t(\%)$	$0.69\substack{+0.12\\-0.11}$	$0.55\substack{+0.1\\-0.09}$	$0.27\substack{+0.13\\-0.12}$
$A^{lb}(\%)$	$2.23_{-0.68}^{+0.43}$	$0.97\substack{+0.74 \\ -0.45}$	$0.54\substack{+0.39 \\ -0.31}$
$A_c(\%)$	$1.75\substack{+0.67 \\ -0.47}$	$1.64_{-0.67}^{+0.58}$	$1.08\substack{+0.27 \\ -0.32}$

 LHCb can do an interesting measurement but requires large amount of luminosity due to low acceptance

Jets!

(21)

Jet Reconstruction

- LHCb standard jet reconstruction procedure uses:
 - ΔR=0.5
 - Note this is not conical in the high η region!
 - Anti-kt
 - FastJet (though typically N<000s)
 - Jet P_T required to be > 5 GeV/c
- Currently under a lot of development
 - Z+jet just published

b-Tagging

- *b*-Tagging is fundamental for any top analysis
 - And currently not so straight-forward on LHCb!
 - LHCb is for fully reconstructed *b*-hadrons
- Tagging mechanisms in development 3 options so far:
 - 1 BDT looking for displaced vertex
 - 2 'Is there a muon'
 - 3 Neural Network on track + jet scope (Liverpool)
- Jet group is very active and growing quickly
 - *b*-Tagging clearly an area of high interest

Neural Net *b*-tagger

- Using NeuroBayes © by Phi-T
 - Powerful pre-processing (normalisation, missing variables, labels vs significant values, etc)
 - Looks for correlation between the variables
- Currently trained on bb MC from MadGraph (fully sim.)
- Minbias for backgrounds
- Minimises the loss function
- Creates output range from -1 to +1
 - -1 very background like
 - +1 very signal like

Output

Efficiency

~1% light jet acceptance, ~60% *b*-jet efficiency For nn=0.9

Further Work

- Three big targets:
 - 1 Data driven *b*-tagger
 - Hard to do without biasing sample
 - Don't want to just look at fully reconstructed *b*-hadrons
 - 2 Cascade information from all taggers into one unified tagger
 - Optimise the *b*-tagging process
 - But requires a lot of work to 'standardise' taggers in first place
 - 3 Data driven efficiency & systematics
 - Currently *b*-tagger efficiency taken from MC (see later)
 - Need to improve this for reducing systematics and understanding tagger properly

Preliminary Cross-Section Measurement

Channel

- Dilepton+b-jet search
 - Unlike leptons
 - 2x branching ratio of like leptons (i.e. ee or μμ)
 - Additional *b*-jet to improve purity over other backgrounds

Theoretical Prediction

- Generate a fiducial cross-section to decrease extrapolation errors
- Predict how often top pairs will give μ ,e with 2.0< $\eta_{\mu,e}$ <4.5 and $P_T(\mu,e)>15$ GeV/c + generator level *b*-quark 2.0< η <4.5 and $P_T(b)>5$ GeV/c
- Predicted using POWHEG, MSTW, NNPDF and CT10 to get feel for PDF uncertainties

 $\sigma_{\rm fid}(\sqrt{s} = 8 \text{ TeV}) = 17.5^{+1.2}_{-1.0}(\text{theo.}) \pm 0.2(\text{stat.}) \pm 2.9(\text{PDF})\text{fb}$

• Expect about 40 top pairs in 2012 2 fb⁻¹ data sample!

Backgrounds

- Backgrounds are $Z \rightarrow \tau\tau$, WW, QCD, ZW
 - *Requiring a b-jet loses 50% from signal due to acceptance*
 - But backgrounds only get b-jets from NLO or mis-ID
- τ has a lifetime, travels O(mm) before decaying, suppress with impact parameter
- WW topologically looks very similar to top pairs
 - Invariant mass (μ,e) very similar
 - Impact parameter very similar
 - Kinematics very similar
- ZW should be sign symmetric i.e. ++ and -- as likely as +-
- QCD dominated by high IP low isolation events

QCD

- Many processes contribute to QCD backgrounds
- Impossible to do from an MC perspective
- Data-driven method is used instead
 - Instead of looking at +- events, look at ++ and -- i.e. same sign rather than unlike sign
- Number of events passing pre-requirements are the same in both channels to within 5%
- Use anti-isolation requirements instead of isolation requirements to test equality

Selection Requirements

<u>Lepton requirements</u>

- Require P_T>15 GeV/c
- Unbiased impact parameter <35 μm
- Impact Parameter Closest Approach <35 μm
- Lepton isolation > 90%
- Jet Requirements
 - P_T>5 GeV/c
 - Neural network output >=0.9
- <u>Overall</u>
- Require candidate muon to have passed L0, HLT1, HLT2 triggers for High PT Muon

MC Event Display

Muon

Data Event Display

Invariant Mass

Jet Network Output

Background Expectation

- Backgrounds for channel selected are comparatively low
- Final state is ~80% pure

Sample	Contributions $[Evts/2.01 \text{ fb}^{-1}]$	Statistical Uncertainty
WW	0.32	0.02
$Z\to\tau\tau$	0.65	0.33
QCD	0.00	1.00
Total	0.97	1.05

Final Candidates

- 6 events observed in full data sample
- Expect ~1 to be background

Reconstruction Efficiencies

All are from MC vs data comparisons except the *b*-tagging efficiency

Parameter	Efficiency	Systematic Uncertainty [%]
ϵ_{trig}	0.756	2.0
ϵ_{GEC}	0.842	2.7
ϵ^{μ}_{track}	0.946	1.5
ϵ^{μ}_{ID}	0.986	1.2
ϵ^{e}_{track}	0.886	2.9
ϵ^{e}_{ID}	0.843	1.2
ϵ_{reso}	0.738	0.7
ϵ_b	0.579	16.8
ϵ^{μ}_{veto}	0.979	2.0
Combination	0.186	17.6

Selection Efficiencies

• Note that the b-tag efficiency is taken in the reconstruction section

Requirement	Efficiency	Stat. Uncert. [%]	Syst. Uncert. [%]
ncand	0.972	0.9	0.0
$M_{inv(\mu,e)}$	0.925	0.9	4.5
IP_{μ}	0.992	1.0	0.7
IP_e	0.990	1.0	0.7
IPCA	0.954	1.0	1.5
I_{μ}	0.852	1.0	4.3
I_e	0.793	1.0	0.8
Combined	0.535	2.5	6.5

Cross-Section

• FSR Correction of 1.035

$$\sigma = \frac{N_{sig} - N_{bkg}}{\epsilon_{rec}\epsilon_{sel}\mathcal{L}A}$$

• Final cross-section is

 $\sigma = 24.3^{+14.6}_{-9.7}$ (stat.) ± 6.9 (syst.) ± 0.9 (lum.)fb

- Note: With 6 candidates extremely statistically limited
- Use millions of pseudoexperiments with Gaussian samples of background fluctuations to determine signifiance of ~3.7σ

Outlook

- Systematics are still quite high
 - The *b*-tagging uncertainties need to be reduced (and data-driven)
- Current analysis can measure a ~4.5σ excess
- Fiducial cross-section increases rapidly with centre of mass energy
 - Increases to ~284 <u>+</u> 24 fb at 14 TeV
 - After reconstruction and selection efficiencies, reconstruct 30 top candidates per fb⁻¹
- Other channels offer higher statistics but lower purity
 - Work being done on μ +*b* at the moment
 - Extremely sensitive to mis-ID rate!

Summary

- LHCb offers an interesting and unexplored phase space for top quark measurements
- Work underway to develop the necessary framework for these
- Preliminary cross-section measurement has been performed in a dilepton+jet channel
- An LHCb asymmetry measurement needs a lot of luminosity for reasonable precision
 - LHCb upgrade!

Some further reading

- R. Gauld, Feasibility of top quark measurements at LHCb and constraints on the large-*x* gluon PDF, arXiv:1311.1810 (2013)
- A. Kagan, J. Kamenik, G. Perez et al., Top LHCb Physics, arXiv: 1103.3747 (2011)
- R. Gauld, Measuring Top Quark Production Asymmetries at LHCb, LHCb-PUB-2013-009 (2013)

Backup – Track Net

• Pre-requirements:

Variable	Requirement
IP	<3.00 mm
IP	$>0.08 \mathrm{~mm}$
IP_{sig}	> 0.5
P_T	$>500~{\rm MeV/c}$

• Correlations:

Variable	Correlation with target (σ)
IP	130
σ_{ip}	135
IP_{sig}	176
P_T	93
η	50

Backup – Jet Net

 Require at least 3 tracks. Jet reconstruction imposes minimum of 5 GeV PT requirement

Variable	Correlation with target (σ)
Maximum track network output	138
Jet P_T	65
Maximum Track P_T	33
Average Track IP	24
Track k_T	17
IP tagger sum	19
IP tagger 2nd	11
IP tagger 3rd	8

Backup – NB Loss Function

Backup – Systematics Example

 Taken from comparison of MC (Z) with MC (top) and calibrated to Data (Z). For example, trigger efficiency (tag-andprobe Z→μμ) data

Figure A.15: The $Z \rightarrow \mu \mu$ trigger efficiency as a function of transverse momentum.

Backup – Electron Transverse Momentum

Uncorrected

Backup – Corrected E PT

Backup – ECAL Saturation

